| Step | Hyp | Ref
| Expression |
| 1 | | simpr 108 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) |
| 2 | | pnfxr 8846 |
. . . 4
⊢ +∞
∈ ℝ* |
| 3 | | icossre 8977 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ +∞
∈ ℝ*) → (𝐵[,)+∞) ⊆
ℝ) |
| 4 | 1, 2, 3 | sylancl 404 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,)+∞) ⊆
ℝ) |
| 5 | | ssrexv 3059 |
. . 3
⊢ ((𝐵[,)+∞) ⊆ ℝ
→ (∃𝑗 ∈
(𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
| 6 | 4, 5 | syl 14 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) →
(∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
| 7 | | maxcl 10096 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ) →
sup({𝐵, 𝑗}, ℝ, < ) ∈
ℝ) |
| 8 | 7 | adantll 459 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) →
sup({𝐵, 𝑗}, ℝ, < ) ∈
ℝ) |
| 9 | | maxle1 10097 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ sup({𝐵, 𝑗}, ℝ, < )) |
| 10 | 9 | adantll 459 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ sup({𝐵, 𝑗}, ℝ, < )) |
| 11 | | elicopnf 8992 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ →
(sup({𝐵, 𝑗}, ℝ, < ) ∈ (𝐵[,)+∞) ↔ (sup({𝐵, 𝑗}, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup({𝐵, 𝑗}, ℝ, < )))) |
| 12 | 11 | ad2antlr 472 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) →
(sup({𝐵, 𝑗}, ℝ, < ) ∈ (𝐵[,)+∞) ↔ (sup({𝐵, 𝑗}, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup({𝐵, 𝑗}, ℝ, < )))) |
| 13 | 8, 10, 12 | mpbir2and 885 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) →
sup({𝐵, 𝑗}, ℝ, < ) ∈ (𝐵[,)+∞)) |
| 14 | | simpllr 500 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 15 | | simplr 496 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → 𝑗 ∈ ℝ) |
| 16 | | simpll 495 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐴 ⊆
ℝ) |
| 17 | 16 | sselda 2999 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) |
| 18 | | maxleastb 10100 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) →
(sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 ↔ (𝐵 ≤ 𝑘 ∧ 𝑗 ≤ 𝑘))) |
| 19 | 14, 15, 17, 18 | syl3anc 1169 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 ↔ (𝐵 ≤ 𝑘 ∧ 𝑗 ≤ 𝑘))) |
| 20 | | simpr 108 |
. . . . . . . 8
⊢ ((𝐵 ≤ 𝑘 ∧ 𝑗 ≤ 𝑘) → 𝑗 ≤ 𝑘) |
| 21 | 19, 20 | syl6bi 161 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 → 𝑗 ≤ 𝑘)) |
| 22 | 21 | imim1d 74 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘 ∈ 𝐴) → ((𝑗 ≤ 𝑘 → 𝜑) → (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 → 𝜑))) |
| 23 | 22 | ralimdva 2429 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) →
(∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∀𝑘 ∈ 𝐴 (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 → 𝜑))) |
| 24 | | breq1 3788 |
. . . . . . . 8
⊢ (𝑛 = sup({𝐵, 𝑗}, ℝ, < ) → (𝑛 ≤ 𝑘 ↔ sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘)) |
| 25 | 24 | imbi1d 229 |
. . . . . . 7
⊢ (𝑛 = sup({𝐵, 𝑗}, ℝ, < ) → ((𝑛 ≤ 𝑘 → 𝜑) ↔ (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 → 𝜑))) |
| 26 | 25 | ralbidv 2368 |
. . . . . 6
⊢ (𝑛 = sup({𝐵, 𝑗}, ℝ, < ) → (∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑) ↔ ∀𝑘 ∈ 𝐴 (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 → 𝜑))) |
| 27 | 26 | rspcev 2701 |
. . . . 5
⊢
((sup({𝐵, 𝑗}, ℝ, < ) ∈ (𝐵[,)+∞) ∧ ∀𝑘 ∈ 𝐴 (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 → 𝜑)) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑)) |
| 28 | 13, 23, 27 | syl6an 1363 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) →
(∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑))) |
| 29 | 28 | rexlimdva 2477 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) →
(∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑))) |
| 30 | | breq1 3788 |
. . . . . 6
⊢ (𝑛 = 𝑗 → (𝑛 ≤ 𝑘 ↔ 𝑗 ≤ 𝑘)) |
| 31 | 30 | imbi1d 229 |
. . . . 5
⊢ (𝑛 = 𝑗 → ((𝑛 ≤ 𝑘 → 𝜑) ↔ (𝑗 ≤ 𝑘 → 𝜑))) |
| 32 | 31 | ralbidv 2368 |
. . . 4
⊢ (𝑛 = 𝑗 → (∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑) ↔ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
| 33 | 32 | cbvrexv 2578 |
. . 3
⊢
(∃𝑛 ∈
(𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑛 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑)) |
| 34 | 29, 33 | syl6ib 159 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) →
(∃𝑗 ∈ ℝ
∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) → ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
| 35 | 6, 34 | impbid 127 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) →
(∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |