![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isprm4 | GIF version |
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
Ref | Expression |
---|---|
isprm4 | ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm2 10499 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | |
2 | eluz2nn 8657 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℤ≥‘2) → 𝑧 ∈ ℕ) | |
3 | 2 | pm4.71ri 384 | . . . . . . 7 ⊢ (𝑧 ∈ (ℤ≥‘2) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ∈ (ℤ≥‘2))) |
4 | 3 | imbi1i 236 | . . . . . 6 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ∈ (ℤ≥‘2)) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
5 | impexp 259 | . . . . . 6 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ∈ (ℤ≥‘2)) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) | |
6 | 4, 5 | bitri 182 | . . . . 5 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) |
7 | eluz2b3 8691 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℤ≥‘2) ↔ (𝑧 ∈ ℕ ∧ 𝑧 ≠ 1)) | |
8 | 7 | imbi1i 236 | . . . . . . 7 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ ((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
9 | impexp 259 | . . . . . . . 8 ⊢ (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)))) | |
10 | bi2.04 246 | . . . . . . . . . 10 ⊢ ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃))) | |
11 | nnz 8370 | . . . . . . . . . . . . . 14 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℤ) | |
12 | 1zzd 8378 | . . . . . . . . . . . . . 14 ⊢ (𝑧 ∈ ℕ → 1 ∈ ℤ) | |
13 | zdceq 8423 | . . . . . . . . . . . . . 14 ⊢ ((𝑧 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑧 = 1) | |
14 | 11, 12, 13 | syl2anc 403 | . . . . . . . . . . . . 13 ⊢ (𝑧 ∈ ℕ → DECID 𝑧 = 1) |
15 | dfordc 824 | . . . . . . . . . . . . 13 ⊢ (DECID 𝑧 = 1 → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃))) | |
16 | 14, 15 | syl 14 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ ℕ → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃))) |
17 | df-ne 2246 | . . . . . . . . . . . . 13 ⊢ (𝑧 ≠ 1 ↔ ¬ 𝑧 = 1) | |
18 | 17 | imbi1i 236 | . . . . . . . . . . . 12 ⊢ ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (¬ 𝑧 = 1 → 𝑧 = 𝑃)) |
19 | 16, 18 | syl6rbbr 197 | . . . . . . . . . . 11 ⊢ (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → 𝑧 = 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
20 | 19 | imbi2d 228 | . . . . . . . . . 10 ⊢ (𝑧 ∈ ℕ → ((𝑧 ∥ 𝑃 → (𝑧 ≠ 1 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
21 | 10, 20 | syl5bb 190 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ → ((𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
22 | 21 | imbi2d 228 | . . . . . . . 8 ⊢ (𝑧 ∈ ℕ → ((𝑧 ∈ ℕ → (𝑧 ≠ 1 → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
23 | 9, 22 | syl5bb 190 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → (((𝑧 ∈ ℕ ∧ 𝑧 ≠ 1) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
24 | 8, 23 | syl5bb 190 | . . . . . 6 ⊢ (𝑧 ∈ ℕ → ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
25 | 24 | pm5.74i 178 | . . . . 5 ⊢ ((𝑧 ∈ ℕ → (𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) ↔ (𝑧 ∈ ℕ → (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))) |
26 | pm5.4 247 | . . . . 5 ⊢ ((𝑧 ∈ ℕ → (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | |
27 | 6, 25, 26 | 3bitri 204 | . . . 4 ⊢ ((𝑧 ∈ (ℤ≥‘2) → (𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑧 ∈ ℕ → (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
28 | 27 | ralbii2 2376 | . . 3 ⊢ (∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
29 | 28 | anbi2i 444 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
30 | 1, 29 | bitr4i 185 | 1 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 DECID wdc 775 = wceq 1284 ∈ wcel 1433 ≠ wne 2245 ∀wral 2348 class class class wbr 3785 ‘cfv 4922 1c1 6982 ℕcn 8039 2c2 8089 ℤcz 8351 ℤ≥cuz 8619 ∥ cdvds 10195 ℙcprime 10489 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-1o 6024 df-2o 6025 df-er 6129 df-en 6245 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-rp 8735 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-dvds 10196 df-prm 10490 |
This theorem is referenced by: nprm 10505 prmuz2 10512 dvdsprm 10518 |
Copyright terms: Public domain | W3C validator |