MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnon0 Structured version   Visualization version   Unicode version

Theorem lnon0 27653
Description: The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnon0.1  |-  X  =  ( BaseSet `  U )
lnon0.6  |-  Z  =  ( 0vec `  U
)
lnon0.0  |-  O  =  ( U  0op  W
)
lnon0.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
lnon0  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  T  =/=  O )  ->  E. x  e.  X  x  =/=  Z )
Distinct variable groups:    x, L    x, T    x, U    x, W    x, X
Allowed substitution hints:    O( x)    Z( x)

Proof of Theorem lnon0
StepHypRef Expression
1 ralnex 2992 . . . . 5  |-  ( A. x  e.  X  -.  x  =/=  Z  <->  -.  E. x  e.  X  x  =/=  Z )
2 nne 2798 . . . . . 6  |-  ( -.  x  =/=  Z  <->  x  =  Z )
32ralbii 2980 . . . . 5  |-  ( A. x  e.  X  -.  x  =/=  Z  <->  A. x  e.  X  x  =  Z )
41, 3bitr3i 266 . . . 4  |-  ( -. 
E. x  e.  X  x  =/=  Z  <->  A. x  e.  X  x  =  Z )
5 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  Z  ->  ( T `  x )  =  ( T `  Z ) )
6 lnon0.1 . . . . . . . . . . 11  |-  X  =  ( BaseSet `  U )
7 eqid 2622 . . . . . . . . . . 11  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
8 lnon0.6 . . . . . . . . . . 11  |-  Z  =  ( 0vec `  U
)
9 eqid 2622 . . . . . . . . . . 11  |-  ( 0vec `  W )  =  (
0vec `  W )
10 lnon0.7 . . . . . . . . . . 11  |-  L  =  ( U  LnOp  W
)
116, 7, 8, 9, 10lno0 27611 . . . . . . . . . 10  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T `  Z )  =  ( 0vec `  W
) )
125, 11sylan9eqr 2678 . . . . . . . . 9  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  x  =  Z )  ->  ( T `  x )  =  ( 0vec `  W
) )
1312ex 450 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  (
x  =  Z  -> 
( T `  x
)  =  ( 0vec `  W ) ) )
1413ralimdv 2963 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( A. x  e.  X  x  =  Z  ->  A. x  e.  X  ( T `  x )  =  ( 0vec `  W
) ) )
156, 7, 10lnof 27610 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : X --> ( BaseSet `  W
) )
16 ffn 6045 . . . . . . . 8  |-  ( T : X --> ( BaseSet `  W )  ->  T  Fn  X )
1715, 16syl 17 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T  Fn  X )
1814, 17jctild 566 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( A. x  e.  X  x  =  Z  ->  ( T  Fn  X  /\  A. x  e.  X  ( T `  x )  =  ( 0vec `  W
) ) ) )
19 fconstfv 6476 . . . . . . 7  |-  ( T : X --> { (
0vec `  W ) } 
<->  ( T  Fn  X  /\  A. x  e.  X  ( T `  x )  =  ( 0vec `  W
) ) )
20 fvex 6201 . . . . . . . 8  |-  ( 0vec `  W )  e.  _V
2120fconst2 6470 . . . . . . 7  |-  ( T : X --> { (
0vec `  W ) } 
<->  T  =  ( X  X.  { ( 0vec `  W ) } ) )
2219, 21bitr3i 266 . . . . . 6  |-  ( ( T  Fn  X  /\  A. x  e.  X  ( T `  x )  =  ( 0vec `  W
) )  <->  T  =  ( X  X.  { (
0vec `  W ) } ) )
2318, 22syl6ib 241 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( A. x  e.  X  x  =  Z  ->  T  =  ( X  X.  { ( 0vec `  W
) } ) ) )
24 lnon0.0 . . . . . . . 8  |-  O  =  ( U  0op  W
)
256, 9, 240ofval 27642 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  O  =  ( X  X.  { ( 0vec `  W
) } ) )
26253adant3 1081 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  O  =  ( X  X.  { ( 0vec `  W
) } ) )
2726eqeq2d 2632 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T  =  O  <->  T  =  ( X  X.  { (
0vec `  W ) } ) ) )
2823, 27sylibrd 249 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( A. x  e.  X  x  =  Z  ->  T  =  O ) )
294, 28syl5bi 232 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( -.  E. x  e.  X  x  =/=  Z  ->  T  =  O ) )
3029necon1ad 2811 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  ( T  =/=  O  ->  E. x  e.  X  x  =/=  Z ) )
3130imp 445 1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  /\  T  =/=  O )  ->  E. x  e.  X  x  =/=  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {csn 4177    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   NrmCVeccnv 27439   BaseSetcba 27441   0veccn0v 27443    LnOp clno 27595    0op c0o 27598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-lno 27599  df-0o 27602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator