Proof of Theorem 4atexlemcnd
| Step | Hyp | Ref
| Expression |
| 1 | | 4thatlem.ph |
. . . 4
     
    
 
    

     
      |
| 2 | | 4thatlem0.l |
. . . 4
     |
| 3 | | 4thatlem0.j |
. . . 4
     |
| 4 | | 4thatlem0.m |
. . . 4
     |
| 5 | | 4thatlem0.a |
. . . 4
     |
| 6 | | 4thatlem0.h |
. . . 4
     |
| 7 | | 4thatlem0.u |
. . . 4
  
  |
| 8 | | 4thatlem0.v |
. . . 4
  
  |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemtlw 35353 |
. . 3

  |
| 10 | | 4thatlem0.c |
. . . 4
  
    |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | 4atexlemnclw 35356 |
. . 3
   |
| 12 | | nbrne2 4673 |
. . 3
 
   |
| 13 | 9, 11, 12 | syl2anc 693 |
. 2
   |
| 14 | 1 | 4atexlemk 35333 |
. . . . . . . . 9
   |
| 15 | 1 | 4atexlemq 35337 |
. . . . . . . . 9
   |
| 16 | 1 | 4atexlemt 35339 |
. . . . . . . . 9
   |
| 17 | 3, 5 | hlatjcom 34654 |
. . . . . . . . 9
 
       |
| 18 | 14, 15, 16, 17 | syl3anc 1326 |
. . . . . . . 8
       |
| 19 | | simp221 1202 |
. . . . . . . . . 10
     
    
 
    

     
   
  |
| 20 | 1, 19 | sylbi 207 |
. . . . . . . . 9
   |
| 21 | 3, 5 | hlatjcom 34654 |
. . . . . . . . 9
 
       |
| 22 | 14, 20, 16, 21 | syl3anc 1326 |
. . . . . . . 8
       |
| 23 | 18, 22 | oveq12d 6668 |
. . . . . . 7
   
     
     |
| 24 | 1 | 4atexlemkc 35344 |
. . . . . . . . 9
   |
| 25 | 1 | 4atexlemp 35336 |
. . . . . . . . 9
   |
| 26 | 1 | 4atexlempnq 35341 |
. . . . . . . . 9
   |
| 27 | | simp223 1204 |
. . . . . . . . . 10
     
    
 
    

     
   
      |
| 28 | 1, 27 | sylbi 207 |
. . . . . . . . 9
       |
| 29 | 5, 3 | cvlsupr6 34634 |
. . . . . . . . . 10
  
       
  |
| 30 | 29 | necomd 2849 |
. . . . . . . . 9
  
       
  |
| 31 | 24, 25, 15, 20, 26, 28, 30 | syl132anc 1344 |
. . . . . . . 8
   |
| 32 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemntlpq 35354 |
. . . . . . . . 9
     |
| 33 | 5, 3 | cvlsupr7 34635 |
. . . . . . . . . . . 12
  
       
      |
| 34 | 24, 25, 15, 20, 26, 28, 33 | syl132anc 1344 |
. . . . . . . . . . 11
       |
| 35 | 3, 5 | hlatjcom 34654 |
. . . . . . . . . . . 12
 
       |
| 36 | 14, 15, 20, 35 | syl3anc 1326 |
. . . . . . . . . . 11
       |
| 37 | 34, 36 | eqtr4d 2659 |
. . . . . . . . . 10
       |
| 38 | 37 | breq2d 4665 |
. . . . . . . . 9
   
     |
| 39 | 32, 38 | mtbid 314 |
. . . . . . . 8
     |
| 40 | 2, 3, 4, 5 | 2llnma2 35075 |
. . . . . . . 8
  

       
     |
| 41 | 14, 15, 20, 16, 31, 39, 40 | syl132anc 1344 |
. . . . . . 7
   
     |
| 42 | 23, 41 | eqtr2d 2657 |
. . . . . 6
         |
| 43 | 42 | adantr 481 |
. . . . 5
 
    
    |
| 44 | 1 | 4atexlemkl 35343 |
. . . . . . . . . 10
   |
| 45 | 1, 3, 5 | 4atexlemqtb 35347 |
. . . . . . . . . 10
         |
| 46 | 1, 3, 5 | 4atexlempsb 35346 |
. . . . . . . . . 10
         |
| 47 | | eqid 2622 |
. . . . . . . . . . 11
         |
| 48 | 47, 2, 4 | latmle1 17076 |
. . . . . . . . . 10
  
    
      
   
 
    |
| 49 | 44, 45, 46, 48 | syl3anc 1326 |
. . . . . . . . 9
   
   
   |
| 50 | 10, 49 | syl5eqbr 4688 |
. . . . . . . 8

    |
| 51 | 50 | adantr 481 |
. . . . . . 7
 
     |
| 52 | | simpr 477 |
. . . . . . . 8
 
   |
| 53 | | 4thatlem0.d |
. . . . . . . . . 10
  
    |
| 54 | 47, 3, 5 | hlatjcl 34653 |
. . . . . . . . . . . 12
 
         |
| 55 | 14, 20, 16, 54 | syl3anc 1326 |
. . . . . . . . . . 11
         |
| 56 | 47, 2, 4 | latmle1 17076 |
. . . . . . . . . . 11
  
    
      
   
 
    |
| 57 | 44, 55, 46, 56 | syl3anc 1326 |
. . . . . . . . . 10
   
   
   |
| 58 | 53, 57 | syl5eqbr 4688 |
. . . . . . . . 9

    |
| 59 | 58 | adantr 481 |
. . . . . . . 8
 
     |
| 60 | 52, 59 | eqbrtrd 4675 |
. . . . . . 7
 
     |
| 61 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | 4atexlemc 35355 |
. . . . . . . . . 10
   |
| 62 | 47, 5 | atbase 34576 |
. . . . . . . . . 10
       |
| 63 | 61, 62 | syl 17 |
. . . . . . . . 9
       |
| 64 | 47, 2, 4 | latlem12 17078 |
. . . . . . . . 9
  
    
    
              
  
      |
| 65 | 44, 63, 45, 55, 64 | syl13anc 1328 |
. . . . . . . 8
           
     |
| 66 | 65 | adantr 481 |
. . . . . . 7
 
       
  
      |
| 67 | 51, 60, 66 | mpbi2and 956 |
. . . . . 6
 
   
     |
| 68 | | hlatl 34647 |
. . . . . . . . 9
   |
| 69 | 14, 68 | syl 17 |
. . . . . . . 8
   |
| 70 | 42, 16 | eqeltrrd 2702 |
. . . . . . . 8
   
     |
| 71 | 2, 5 | atcmp 34598 |
. . . . . . . 8
 
  
        
 
  
      |
| 72 | 69, 61, 70, 71 | syl3anc 1326 |
. . . . . . 7
       
  
      |
| 73 | 72 | adantr 481 |
. . . . . 6
 
     
 
  
      |
| 74 | 67, 73 | mpbid 222 |
. . . . 5
 
    
    |
| 75 | 43, 74 | eqtr4d 2659 |
. . . 4
 
   |
| 76 | 75 | ex 450 |
. . 3
     |
| 77 | 76 | necon3d 2815 |
. 2
     |
| 78 | 13, 77 | mpd 15 |
1
   |