![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 4p1e5 | Structured version Visualization version Unicode version |
Description: 4 + 1 = 5. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
4p1e5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11082 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2631 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-5 11082 |
This theorem is referenced by: 8t7e56 11661 9t6e54 11667 s5len 13645 bpoly4 14790 2exp16 15797 prmlem2 15827 163prm 15832 317prm 15833 631prm 15834 prmo5 15836 1259lem1 15838 1259lem2 15839 1259lem3 15840 1259lem4 15841 2503lem1 15844 2503lem2 15845 2503lem3 15846 4001lem1 15848 4001lem2 15849 4001lem3 15850 4001lem4 15851 log2ublem3 24675 log2ub 24676 ex-exp 27307 ex-fac 27308 fib5 30467 fib6 30468 hgt750lemd 30726 hgt750lem2 30730 fmtno1 41453 257prm 41473 fmtno4prmfac 41484 fmtno4nprmfac193 41486 fmtno5faclem2 41492 31prm 41512 127prm 41515 m11nprm 41518 nnsum3primesle9 41682 5m4e1 42543 |
Copyright terms: Public domain | W3C validator |