MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem2 Structured version   Visualization version   Unicode version

Theorem 4001lem2 15849
Description: Lemma for 4001prm 15852. Calculate a power mod. In decimal, we calculate  2 ^ 4 0 0  =  ( 2 ^ 2 0 0 ) ^ 2  ==  9 0 2 ^ 2  =  2 0 3 N  + 
1 4 0 1 and  2 ^ 8 0 0  =  ( 2 ^ 4 0 0 ) ^ 2  ==  1 4 0 1 ^ 2  =  4 9 0 N  +  2 3 1 1  ==  2 3 1 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1  |-  N  = ;;; 4 0 0 1
Assertion
Ref Expression
4001lem2  |-  ( ( 2 ^;; 8 0 0 )  mod 
N )  =  (;;; 2 3 1 1  mod 
N )

Proof of Theorem 4001lem2
StepHypRef Expression
1 4001prm.1 . . 3  |-  N  = ;;; 4 0 0 1
2 4nn0 11311 . . . . . 6  |-  4  e.  NN0
3 0nn0 11307 . . . . . 6  |-  0  e.  NN0
42, 3deccl 11512 . . . . 5  |- ; 4 0  e.  NN0
54, 3deccl 11512 . . . 4  |- ;; 4 0 0  e.  NN0
6 1nn 11031 . . . 4  |-  1  e.  NN
75, 6decnncl 11518 . . 3  |- ;;; 4 0 0 1  e.  NN
81, 7eqeltri 2697 . 2  |-  N  e.  NN
9 2nn 11185 . 2  |-  2  e.  NN
10 9nn0 11316 . . . . 5  |-  9  e.  NN0
112, 10deccl 11512 . . . 4  |- ; 4 9  e.  NN0
1211, 3deccl 11512 . . 3  |- ;; 4 9 0  e.  NN0
1312nn0zi 11402 . 2  |- ;; 4 9 0  e.  ZZ
14 1nn0 11308 . . . . 5  |-  1  e.  NN0
1514, 2deccl 11512 . . . 4  |- ; 1 4  e.  NN0
1615, 3deccl 11512 . . 3  |- ;; 1 4 0  e.  NN0
1716, 14deccl 11512 . 2  |- ;;; 1 4 0 1  e.  NN0
18 2nn0 11309 . . . . 5  |-  2  e.  NN0
19 3nn0 11310 . . . . 5  |-  3  e.  NN0
2018, 19deccl 11512 . . . 4  |- ; 2 3  e.  NN0
2120, 14deccl 11512 . . 3  |- ;; 2 3 1  e.  NN0
2221, 14deccl 11512 . 2  |- ;;; 2 3 1 1  e.  NN0
2318, 3deccl 11512 . . . 4  |- ; 2 0  e.  NN0
2423, 3deccl 11512 . . 3  |- ;; 2 0 0  e.  NN0
2523, 19deccl 11512 . . . 4  |- ;; 2 0 3  e.  NN0
2625nn0zi 11402 . . 3  |- ;; 2 0 3  e.  ZZ
2710, 3deccl 11512 . . . 4  |- ; 9 0  e.  NN0
2827, 18deccl 11512 . . 3  |- ;; 9 0 2  e.  NN0
2914001lem1 15848 . . 3  |-  ( ( 2 ^;; 2 0 0 )  mod 
N )  =  (;; 9 0 2  mod 
N )
3024nn0cni 11304 . . . 4  |- ;; 2 0 0  e.  CC
31 2cn 11091 . . . 4  |-  2  e.  CC
32 eqid 2622 . . . . 5  |- ;; 2 0 0  = ;; 2 0 0
33 eqid 2622 . . . . . 6  |- ; 2 0  = ; 2 0
34 2t2e4 11177 . . . . . 6  |-  ( 2  x.  2 )  =  4
3531mul02i 10225 . . . . . 6  |-  ( 0  x.  2 )  =  0
3618, 18, 3, 33, 3, 34, 35decmul1 11585 . . . . 5  |-  (; 2 0  x.  2 )  = ; 4 0
3718, 23, 3, 32, 3, 36, 35decmul1 11585 . . . 4  |-  (;; 2 0 0  x.  2 )  = ;; 4 0 0
3830, 31, 37mulcomli 10047 . . 3  |-  ( 2  x. ;; 2 0 0 )  = ;; 4 0 0
39 eqid 2622 . . . . 5  |- ;;; 1 4 0 1  = ;;; 1 4 0 1
40 6nn0 11313 . . . . . . 7  |-  6  e.  NN0
4114, 40deccl 11512 . . . . . 6  |- ; 1 6  e.  NN0
42 eqid 2622 . . . . . 6  |- ;; 4 0 0  = ;; 4 0 0
43 eqid 2622 . . . . . . 7  |- ;; 1 4 0  = ;; 1 4 0
44 eqid 2622 . . . . . . . 8  |- ; 1 4  = ; 1 4
45 4p2e6 11162 . . . . . . . 8  |-  ( 4  +  2 )  =  6
4614, 2, 18, 44, 45decaddi 11579 . . . . . . 7  |-  (; 1 4  +  2 )  = ; 1 6
47 00id 10211 . . . . . . 7  |-  ( 0  +  0 )  =  0
4815, 3, 18, 3, 43, 33, 46, 47decadd 11570 . . . . . 6  |-  (;; 1 4 0  + ; 2 0 )  = ;; 1 6 0
49 eqid 2622 . . . . . . 7  |- ; 4 0  = ; 4 0
5041nn0cni 11304 . . . . . . . 8  |- ; 1 6  e.  CC
5150addid1i 10223 . . . . . . 7  |-  (; 1 6  +  0 )  = ; 1 6
52 eqid 2622 . . . . . . . 8  |- ;; 2 0 3  = ;; 2 0 3
53 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
5453addid1i 10223 . . . . . . . . 9  |-  ( 1  +  0 )  =  1
5514dec0h 11522 . . . . . . . . 9  |-  1  = ; 0 1
5654, 55eqtri 2644 . . . . . . . 8  |-  ( 1  +  0 )  = ; 0
1
5753addid2i 10224 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
5857, 14eqeltri 2697 . . . . . . . . 9  |-  ( 0  +  1 )  e. 
NN0
59 4cn 11098 . . . . . . . . . 10  |-  4  e.  CC
60 4t2e8 11181 . . . . . . . . . 10  |-  ( 4  x.  2 )  =  8
6159, 31, 60mulcomli 10047 . . . . . . . . 9  |-  ( 2  x.  4 )  =  8
6259mul02i 10225 . . . . . . . . . . 11  |-  ( 0  x.  4 )  =  0
6362, 57oveq12i 6662 . . . . . . . . . 10  |-  ( ( 0  x.  4 )  +  ( 0  +  1 ) )  =  ( 0  +  1 )
6463, 57eqtri 2644 . . . . . . . . 9  |-  ( ( 0  x.  4 )  +  ( 0  +  1 ) )  =  1
6518, 3, 58, 33, 2, 61, 64decrmanc 11576 . . . . . . . 8  |-  ( (; 2
0  x.  4 )  +  ( 0  +  1 ) )  = ; 8
1
66 2p1e3 11151 . . . . . . . . 9  |-  ( 2  +  1 )  =  3
67 3cn 11095 . . . . . . . . . 10  |-  3  e.  CC
68 4t3e12 11632 . . . . . . . . . 10  |-  ( 4  x.  3 )  = ; 1
2
6959, 67, 68mulcomli 10047 . . . . . . . . 9  |-  ( 3  x.  4 )  = ; 1
2
7014, 18, 66, 69decsuc 11535 . . . . . . . 8  |-  ( ( 3  x.  4 )  +  1 )  = ; 1
3
7123, 19, 3, 14, 52, 56, 2, 19, 14, 65, 70decmac 11566 . . . . . . 7  |-  ( (;; 2 0 3  x.  4 )  +  ( 1  +  0 ) )  = ;; 8 1 3
7225nn0cni 11304 . . . . . . . . . 10  |- ;; 2 0 3  e.  CC
7372mul01i 10226 . . . . . . . . 9  |-  (;; 2 0 3  x.  0 )  =  0
7473oveq1i 6660 . . . . . . . 8  |-  ( (;; 2 0 3  x.  0 )  +  6 )  =  ( 0  +  6 )
75 6cn 11102 . . . . . . . . 9  |-  6  e.  CC
7675addid2i 10224 . . . . . . . 8  |-  ( 0  +  6 )  =  6
7740dec0h 11522 . . . . . . . 8  |-  6  = ; 0 6
7874, 76, 773eqtri 2648 . . . . . . 7  |-  ( (;; 2 0 3  x.  0 )  +  6 )  = ; 0 6
792, 3, 14, 40, 49, 51, 25, 40, 3, 71, 78decma2c 11568 . . . . . 6  |-  ( (;; 2 0 3  x. ; 4
0 )  +  (; 1
6  +  0 ) )  = ;;; 8 1 3 6
8073oveq1i 6660 . . . . . . 7  |-  ( (;; 2 0 3  x.  0 )  +  0 )  =  ( 0  +  0 )
813dec0h 11522 . . . . . . 7  |-  0  = ; 0 0
8280, 47, 813eqtri 2648 . . . . . 6  |-  ( (;; 2 0 3  x.  0 )  +  0 )  = ; 0 0
834, 3, 41, 3, 42, 48, 25, 3, 3, 79, 82decma2c 11568 . . . . 5  |-  ( (;; 2 0 3  x. ;; 4 0 0 )  +  (;; 1 4 0  + ; 2 0 ) )  = ;;;; 8 1 3 6 0
8431mulid1i 10042 . . . . . . 7  |-  ( 2  x.  1 )  =  2
8553mul02i 10225 . . . . . . 7  |-  ( 0  x.  1 )  =  0
8614, 18, 3, 33, 3, 84, 85decmul1 11585 . . . . . 6  |-  (; 2 0  x.  1 )  = ; 2 0
8767mulid1i 10042 . . . . . . . 8  |-  ( 3  x.  1 )  =  3
8887oveq1i 6660 . . . . . . 7  |-  ( ( 3  x.  1 )  +  1 )  =  ( 3  +  1 )
89 3p1e4 11153 . . . . . . 7  |-  ( 3  +  1 )  =  4
9088, 89eqtri 2644 . . . . . 6  |-  ( ( 3  x.  1 )  +  1 )  =  4
9123, 19, 14, 52, 14, 86, 90decrmanc 11576 . . . . 5  |-  ( (;; 2 0 3  x.  1 )  +  1 )  = ;; 2 0 4
925, 14, 16, 14, 1, 39, 25, 2, 23, 83, 91decma2c 11568 . . . 4  |-  ( (;; 2 0 3  x.  N )  + ;;; 1 4 0 1 )  = ;;;;; 8 1 3 6 0 4
93 eqid 2622 . . . . 5  |- ;; 9 0 2  = ;; 9 0 2
94 8nn0 11315 . . . . . . 7  |-  8  e.  NN0
9514, 94deccl 11512 . . . . . 6  |- ; 1 8  e.  NN0
9695, 3deccl 11512 . . . . 5  |- ;; 1 8 0  e.  NN0
97 eqid 2622 . . . . . 6  |- ; 9 0  = ; 9 0
98 eqid 2622 . . . . . 6  |- ;; 1 8 0  = ;; 1 8 0
9995nn0cni 11304 . . . . . . . 8  |- ; 1 8  e.  CC
10099addid1i 10223 . . . . . . 7  |-  (; 1 8  +  0 )  = ; 1 8
101 1p2e3 11152 . . . . . . . . 9  |-  ( 1  +  2 )  =  3
102101, 19eqeltri 2697 . . . . . . . 8  |-  ( 1  +  2 )  e. 
NN0
103 9t9e81 11670 . . . . . . . 8  |-  ( 9  x.  9 )  = ; 8
1
104 9cn 11108 . . . . . . . . . . 11  |-  9  e.  CC
105104mul02i 10225 . . . . . . . . . 10  |-  ( 0  x.  9 )  =  0
106105, 101oveq12i 6662 . . . . . . . . 9  |-  ( ( 0  x.  9 )  +  ( 1  +  2 ) )  =  ( 0  +  3 )
10767addid2i 10224 . . . . . . . . 9  |-  ( 0  +  3 )  =  3
108106, 107eqtri 2644 . . . . . . . 8  |-  ( ( 0  x.  9 )  +  ( 1  +  2 ) )  =  3
10910, 3, 102, 97, 10, 103, 108decrmanc 11576 . . . . . . 7  |-  ( (; 9
0  x.  9 )  +  ( 1  +  2 ) )  = ;; 8 1 3
110 9t2e18 11663 . . . . . . . . 9  |-  ( 9  x.  2 )  = ; 1
8
111104, 31, 110mulcomli 10047 . . . . . . . 8  |-  ( 2  x.  9 )  = ; 1
8
112 1p1e2 11134 . . . . . . . 8  |-  ( 1  +  1 )  =  2
113 8p8e16 11618 . . . . . . . 8  |-  ( 8  +  8 )  = ; 1
6
11414, 94, 94, 111, 112, 40, 113decaddci 11580 . . . . . . 7  |-  ( ( 2  x.  9 )  +  8 )  = ; 2
6
11527, 18, 14, 94, 93, 100, 10, 40, 18, 109, 114decmac 11566 . . . . . 6  |-  ( (;; 9 0 2  x.  9 )  +  (; 1
8  +  0 ) )  = ;;; 8 1 3 6
11628nn0cni 11304 . . . . . . . . 9  |- ;; 9 0 2  e.  CC
117116mul01i 10226 . . . . . . . 8  |-  (;; 9 0 2  x.  0 )  =  0
118117oveq1i 6660 . . . . . . 7  |-  ( (;; 9 0 2  x.  0 )  +  0 )  =  ( 0  +  0 )
119118, 47, 813eqtri 2648 . . . . . 6  |-  ( (;; 9 0 2  x.  0 )  +  0 )  = ; 0 0
12010, 3, 95, 3, 97, 98, 28, 3, 3, 115, 119decma2c 11568 . . . . 5  |-  ( (;; 9 0 2  x. ; 9
0 )  + ;; 1 8 0 )  = ;;;; 8 1 3 6 0
12118, 10, 3, 97, 3, 110, 35decmul1 11585 . . . . . 6  |-  (; 9 0  x.  2 )  = ;; 1 8 0
12218, 27, 18, 93, 2, 121, 34decmul1 11585 . . . . 5  |-  (;; 9 0 2  x.  2 )  = ;;; 1 8 0 4
12328, 27, 18, 93, 2, 96, 120, 122decmul2c 11589 . . . 4  |-  (;; 9 0 2  x. ;; 9 0 2 )  = ;;;;; 8 1 3 6 0 4
12492, 123eqtr4i 2647 . . 3  |-  ( (;; 2 0 3  x.  N )  + ;;; 1 4 0 1 )  =  (;; 9 0 2  x. ;; 9 0 2 )
1258, 9, 24, 26, 28, 17, 29, 38, 124mod2xi 15773 . 2  |-  ( ( 2 ^;; 4 0 0 )  mod 
N )  =  (;;; 1 4 0 1  mod 
N )
1265nn0cni 11304 . . 3  |- ;; 4 0 0  e.  CC
12718, 2, 3, 49, 3, 60, 35decmul1 11585 . . . 4  |-  (; 4 0  x.  2 )  = ; 8 0
12818, 4, 3, 42, 3, 127, 35decmul1 11585 . . 3  |-  (;; 4 0 0  x.  2 )  = ;; 8 0 0
129126, 31, 128mulcomli 10047 . 2  |-  ( 2  x. ;; 4 0 0 )  = ;; 8 0 0
130 eqid 2622 . . . 4  |- ;;; 2 3 1 1  = ;;; 2 3 1 1
13118, 94deccl 11512 . . . . 5  |- ; 2 8  e.  NN0
132 eqid 2622 . . . . . 6  |- ;; 2 3 1  = ;; 2 3 1
133 eqid 2622 . . . . . 6  |- ; 4 9  = ; 4 9
134 7nn0 11314 . . . . . . 7  |-  7  e.  NN0
135 7p1e8 11157 . . . . . . 7  |-  ( 7  +  1 )  =  8
136 eqid 2622 . . . . . . . 8  |- ; 2 3  = ; 2 3
137 4p3e7 11163 . . . . . . . . 9  |-  ( 4  +  3 )  =  7
13859, 67, 137addcomli 10228 . . . . . . . 8  |-  ( 3  +  4 )  =  7
13918, 19, 2, 136, 138decaddi 11579 . . . . . . 7  |-  (; 2 3  +  4 )  = ; 2 7
14018, 134, 135, 139decsuc 11535 . . . . . 6  |-  ( (; 2
3  +  4 )  +  1 )  = ; 2
8
141 9p1e10 11496 . . . . . . 7  |-  ( 9  +  1 )  = ; 1
0
142104, 53, 141addcomli 10228 . . . . . 6  |-  ( 1  +  9 )  = ; 1
0
14320, 14, 2, 10, 132, 133, 140, 142decaddc2 11575 . . . . 5  |-  (;; 2 3 1  + ; 4 9 )  = ;; 2 8 0
144131nn0cni 11304 . . . . . . 7  |- ; 2 8  e.  CC
145144addid1i 10223 . . . . . 6  |-  (; 2 8  +  0 )  = ; 2 8
14631addid1i 10223 . . . . . . . 8  |-  ( 2  +  0 )  =  2
147146, 18eqeltri 2697 . . . . . . 7  |-  ( 2  +  0 )  e. 
NN0
148 eqid 2622 . . . . . . 7  |- ;; 4 9 0  = ;; 4 9 0
149 4t4e16 11633 . . . . . . . . 9  |-  ( 4  x.  4 )  = ; 1
6
150 6p3e9 11170 . . . . . . . . 9  |-  ( 6  +  3 )  =  9
15114, 40, 19, 149, 150decaddi 11579 . . . . . . . 8  |-  ( ( 4  x.  4 )  +  3 )  = ; 1
9
152 9t4e36 11665 . . . . . . . 8  |-  ( 9  x.  4 )  = ; 3
6
1532, 2, 10, 133, 40, 19, 151, 152decmul1c 11587 . . . . . . 7  |-  (; 4 9  x.  4 )  = ;; 1 9 6
15462, 146oveq12i 6662 . . . . . . . 8  |-  ( ( 0  x.  4 )  +  ( 2  +  0 ) )  =  ( 0  +  2 )
15531addid2i 10224 . . . . . . . 8  |-  ( 0  +  2 )  =  2
156154, 155eqtri 2644 . . . . . . 7  |-  ( ( 0  x.  4 )  +  ( 2  +  0 ) )  =  2
15711, 3, 147, 148, 2, 153, 156decrmanc 11576 . . . . . 6  |-  ( (;; 4 9 0  x.  4 )  +  ( 2  +  0 ) )  = ;;; 1 9 6 2
15812nn0cni 11304 . . . . . . . . 9  |- ;; 4 9 0  e.  CC
159158mul01i 10226 . . . . . . . 8  |-  (;; 4 9 0  x.  0 )  =  0
160159oveq1i 6660 . . . . . . 7  |-  ( (;; 4 9 0  x.  0 )  +  8 )  =  ( 0  +  8 )
161 8cn 11106 . . . . . . . 8  |-  8  e.  CC
162161addid2i 10224 . . . . . . 7  |-  ( 0  +  8 )  =  8
16394dec0h 11522 . . . . . . 7  |-  8  = ; 0 8
164160, 162, 1633eqtri 2648 . . . . . 6  |-  ( (;; 4 9 0  x.  0 )  +  8 )  = ; 0 8
1652, 3, 18, 94, 49, 145, 12, 94, 3, 157, 164decma2c 11568 . . . . 5  |-  ( (;; 4 9 0  x. ; 4
0 )  +  (; 2
8  +  0 ) )  = ;;;; 1 9 6 2 8
166159oveq1i 6660 . . . . . 6  |-  ( (;; 4 9 0  x.  0 )  +  0 )  =  ( 0  +  0 )
167166, 47, 813eqtri 2648 . . . . 5  |-  ( (;; 4 9 0  x.  0 )  +  0 )  = ; 0 0
1684, 3, 131, 3, 42, 143, 12, 3, 3, 165, 167decma2c 11568 . . . 4  |-  ( (;; 4 9 0  x. ;; 4 0 0 )  +  (;; 2 3 1  + ; 4 9 ) )  = ;;;;; 1 9 6 2 8 0
16959mulid1i 10042 . . . . . 6  |-  ( 4  x.  1 )  =  4
170104mulid1i 10042 . . . . . 6  |-  ( 9  x.  1 )  =  9
17114, 2, 10, 133, 10, 169, 170decmul1 11585 . . . . 5  |-  (; 4 9  x.  1 )  = ; 4 9
17285oveq1i 6660 . . . . . 6  |-  ( ( 0  x.  1 )  +  1 )  =  ( 0  +  1 )
173172, 57eqtri 2644 . . . . 5  |-  ( ( 0  x.  1 )  +  1 )  =  1
17411, 3, 14, 148, 14, 171, 173decrmanc 11576 . . . 4  |-  ( (;; 4 9 0  x.  1 )  +  1 )  = ;; 4 9 1
1755, 14, 21, 14, 1, 130, 12, 14, 11, 168, 174decma2c 11568 . . 3  |-  ( (;; 4 9 0  x.  N )  + ;;; 2 3 1 1 )  = ;;;;;; 1 9 6 2 8 0 1
17615nn0cni 11304 . . . . . . 7  |- ; 1 4  e.  CC
177176addid1i 10223 . . . . . 6  |-  (; 1 4  +  0 )  = ; 1 4
178 5nn0 11312 . . . . . . . 8  |-  5  e.  NN0
179178, 40deccl 11512 . . . . . . 7  |- ; 5 6  e.  NN0
180179, 3deccl 11512 . . . . . 6  |- ;; 5 6 0  e.  NN0
181 eqid 2622 . . . . . . . 8  |- ;; 5 6 0  = ;; 5 6 0
182179nn0cni 11304 . . . . . . . . 9  |- ; 5 6  e.  CC
183182addid2i 10224 . . . . . . . 8  |-  ( 0  + ; 5 6 )  = ; 5
6
1843, 14, 179, 3, 55, 181, 183, 54decadd 11570 . . . . . . 7  |-  ( 1  + ;; 5 6 0 )  = ;; 5 6 1
185182addid1i 10223 . . . . . . . 8  |-  (; 5 6  +  0 )  = ; 5 6
186 5cn 11100 . . . . . . . . . . 11  |-  5  e.  CC
187186addid1i 10223 . . . . . . . . . 10  |-  ( 5  +  0 )  =  5
188187, 178eqeltri 2697 . . . . . . . . 9  |-  ( 5  +  0 )  e. 
NN0
18953mulid1i 10042 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
190169, 187oveq12i 6662 . . . . . . . . . 10  |-  ( ( 4  x.  1 )  +  ( 5  +  0 ) )  =  ( 4  +  5 )
191 5p4e9 11167 . . . . . . . . . . 11  |-  ( 5  +  4 )  =  9
192186, 59, 191addcomli 10228 . . . . . . . . . 10  |-  ( 4  +  5 )  =  9
193190, 192eqtri 2644 . . . . . . . . 9  |-  ( ( 4  x.  1 )  +  ( 5  +  0 ) )  =  9
19414, 2, 188, 44, 14, 189, 193decrmanc 11576 . . . . . . . 8  |-  ( (; 1
4  x.  1 )  +  ( 5  +  0 ) )  = ; 1
9
19585oveq1i 6660 . . . . . . . . 9  |-  ( ( 0  x.  1 )  +  6 )  =  ( 0  +  6 )
196195, 76, 773eqtri 2648 . . . . . . . 8  |-  ( ( 0  x.  1 )  +  6 )  = ; 0
6
19715, 3, 178, 40, 43, 185, 14, 40, 3, 194, 196decmac 11566 . . . . . . 7  |-  ( (;; 1 4 0  x.  1 )  +  (; 5
6  +  0 ) )  = ;; 1 9 6
198189oveq1i 6660 . . . . . . . 8  |-  ( ( 1  x.  1 )  +  1 )  =  ( 1  +  1 )
19918dec0h 11522 . . . . . . . 8  |-  2  = ; 0 2
200198, 112, 1993eqtri 2648 . . . . . . 7  |-  ( ( 1  x.  1 )  +  1 )  = ; 0
2
20116, 14, 179, 14, 39, 184, 14, 18, 3, 197, 200decmac 11566 . . . . . 6  |-  ( (;;; 1 4 0 1  x.  1 )  +  ( 1  + ;; 5 6 0 ) )  = ;;; 1 9 6 2
20259mulid2i 10043 . . . . . . . . . . . 12  |-  ( 1  x.  4 )  =  4
203202oveq1i 6660 . . . . . . . . . . 11  |-  ( ( 1  x.  4 )  +  1 )  =  ( 4  +  1 )
204 4p1e5 11154 . . . . . . . . . . 11  |-  ( 4  +  1 )  =  5
205203, 204eqtri 2644 . . . . . . . . . 10  |-  ( ( 1  x.  4 )  +  1 )  =  5
2062, 14, 2, 44, 40, 14, 205, 149decmul1c 11587 . . . . . . . . 9  |-  (; 1 4  x.  4 )  = ; 5 6
20775addid1i 10223 . . . . . . . . 9  |-  ( 6  +  0 )  =  6
208178, 40, 3, 206, 207decaddi 11579 . . . . . . . 8  |-  ( (; 1
4  x.  4 )  +  0 )  = ; 5
6
209 0cn 10032 . . . . . . . . 9  |-  0  e.  CC
21059mul01i 10226 . . . . . . . . . 10  |-  ( 4  x.  0 )  =  0
211210, 81eqtri 2644 . . . . . . . . 9  |-  ( 4  x.  0 )  = ; 0
0
21259, 209, 211mulcomli 10047 . . . . . . . 8  |-  ( 0  x.  4 )  = ; 0
0
2132, 15, 3, 43, 3, 3, 208, 212decmul1c 11587 . . . . . . 7  |-  (;; 1 4 0  x.  4 )  = ;; 5 6 0
214202oveq1i 6660 . . . . . . . 8  |-  ( ( 1  x.  4 )  +  4 )  =  ( 4  +  4 )
215 4p4e8 11164 . . . . . . . 8  |-  ( 4  +  4 )  =  8
216214, 215eqtri 2644 . . . . . . 7  |-  ( ( 1  x.  4 )  +  4 )  =  8
21716, 14, 2, 39, 2, 213, 216decrmanc 11576 . . . . . 6  |-  ( (;;; 1 4 0 1  x.  4 )  +  4 )  = ;;; 5 6 0 8
21814, 2, 14, 2, 44, 177, 17, 94, 180, 201, 217decma2c 11568 . . . . 5  |-  ( (;;; 1 4 0 1  x. ; 1
4 )  +  (; 1
4  +  0 ) )  = ;;;; 1 9 6 2 8
21917nn0cni 11304 . . . . . . . 8  |- ;;; 1 4 0 1  e.  CC
220219mul01i 10226 . . . . . . 7  |-  (;;; 1 4 0 1  x.  0 )  =  0
221220oveq1i 6660 . . . . . 6  |-  ( (;;; 1 4 0 1  x.  0 )  +  0 )  =  ( 0  +  0 )
222221, 47, 813eqtri 2648 . . . . 5  |-  ( (;;; 1 4 0 1  x.  0 )  +  0 )  = ; 0 0
22315, 3, 15, 3, 43, 43, 17, 3, 3, 218, 222decma2c 11568 . . . 4  |-  ( (;;; 1 4 0 1  x. ;; 1 4 0 )  + ;; 1 4 0 )  = ;;;;; 1 9 6 2 8 0
224219mulid1i 10042 . . . 4  |-  (;;; 1 4 0 1  x.  1 )  = ;;; 1 4 0 1
22517, 16, 14, 39, 14, 16, 223, 224decmul2c 11589 . . 3  |-  (;;; 1 4 0 1  x. ;;; 1 4 0 1 )  = ;;;;;; 1 9 6 2 8 0 1
226175, 225eqtr4i 2647 . 2  |-  ( (;; 4 9 0  x.  N )  + ;;; 2 3 1 1 )  =  (;;; 1 4 0 1  x. ;;; 1 4 0 1 )
2278, 9, 5, 13, 17, 22, 125, 129, 226mod2xi 15773 1  |-  ( ( 2 ^;; 8 0 0 )  mod 
N )  =  (;;; 2 3 1 1  mod 
N )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   5c5 11073   6c6 11074   7c7 11075   8c8 11076   9c9 11077   NN0cn0 11292  ;cdc 11493    mod cmo 12668   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861
This theorem is referenced by:  4001lem3  15850  4001lem4  15851
  Copyright terms: Public domain W3C validator