MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdom Structured version   Visualization version   Unicode version

Theorem abvdom 18838
Description: Any ring with an absolute value is a domain, which is to say that it contains no zero divisors. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvrec.z  |-  .0.  =  ( 0g `  R )
abvdom.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
abvdom  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( X  .x.  Y
)  =/=  .0.  )

Proof of Theorem abvdom
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  F  e.  A )
2 simp2l 1087 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  X  e.  B )
3 simp3l 1089 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  Y  e.  B )
4 abv0.a . . . . 5  |-  A  =  (AbsVal `  R )
5 abvneg.b . . . . 5  |-  B  =  ( Base `  R
)
6 abvdom.t . . . . 5  |-  .x.  =  ( .r `  R )
74, 5, 6abvmul 18829 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `  ( X  .x.  Y ) )  =  ( ( F `
 X )  x.  ( F `  Y
) ) )
81, 2, 3, 7syl3anc 1326 . . 3  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  ( X  .x.  Y ) )  =  ( ( F `
 X )  x.  ( F `  Y
) ) )
94, 5abvcl 18824 . . . . . 6  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
101, 2, 9syl2anc 693 . . . . 5  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  X
)  e.  RR )
1110recnd 10068 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  X
)  e.  CC )
124, 5abvcl 18824 . . . . . 6  |-  ( ( F  e.  A  /\  Y  e.  B )  ->  ( F `  Y
)  e.  RR )
131, 3, 12syl2anc 693 . . . . 5  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  Y
)  e.  RR )
1413recnd 10068 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  Y
)  e.  CC )
15 simp2r 1088 . . . . 5  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  X  =/=  .0.  )
16 abvrec.z . . . . . 6  |-  .0.  =  ( 0g `  R )
174, 5, 16abvne0 18827 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B  /\  X  =/=  .0.  )  -> 
( F `  X
)  =/=  0 )
181, 2, 15, 17syl3anc 1326 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  X
)  =/=  0 )
19 simp3r 1090 . . . . 5  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  ->  Y  =/=  .0.  )
204, 5, 16abvne0 18827 . . . . 5  |-  ( ( F  e.  A  /\  Y  e.  B  /\  Y  =/=  .0.  )  -> 
( F `  Y
)  =/=  0 )
211, 3, 19, 20syl3anc 1326 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  Y
)  =/=  0 )
2211, 14, 18, 21mulne0d 10679 . . 3  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( ( F `  X )  x.  ( F `  Y )
)  =/=  0 )
238, 22eqnetrd 2861 . 2  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  ( X  .x.  Y ) )  =/=  0 )
244, 16abv0 18831 . . . . 5  |-  ( F  e.  A  ->  ( F `  .0.  )  =  0 )
251, 24syl 17 . . . 4  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( F `  .0.  )  =  0 )
26 fveq2 6191 . . . . 5  |-  ( ( X  .x.  Y )  =  .0.  ->  ( F `  ( X  .x.  Y ) )  =  ( F `  .0.  ) )
2726eqeq1d 2624 . . . 4  |-  ( ( X  .x.  Y )  =  .0.  ->  (
( F `  ( X  .x.  Y ) )  =  0  <->  ( F `  .0.  )  =  0 ) )
2825, 27syl5ibrcom 237 . . 3  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( ( X  .x.  Y )  =  .0. 
->  ( F `  ( X  .x.  Y ) )  =  0 ) )
2928necon3d 2815 . 2  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( ( F `  ( X  .x.  Y ) )  =/=  0  -> 
( X  .x.  Y
)  =/=  .0.  )
)
3023, 29mpd 15 1  |-  ( ( F  e.  A  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  -> 
( X  .x.  Y
)  =/=  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    x. cmul 9941   Basecbs 15857   .rcmulr 15942   0gc0g 16100  AbsValcabv 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ring 18549  df-abv 18817
This theorem is referenced by:  abvn0b  19302
  Copyright terms: Public domain W3C validator