MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvdiv Structured version   Visualization version   Unicode version

Theorem abvdiv 18837
Description: The absolute value distributes under division. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
abv0.a  |-  A  =  (AbsVal `  R )
abvneg.b  |-  B  =  ( Base `  R
)
abvrec.z  |-  .0.  =  ( 0g `  R )
abvdiv.p  |-  ./  =  (/r
`  R )
Assertion
Ref Expression
abvdiv  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X  ./  Y ) )  =  ( ( F `  X )  /  ( F `  Y )
) )

Proof of Theorem abvdiv
StepHypRef Expression
1 simplr 792 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  F  e.  A )
2 simpr1 1067 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  X  e.  B )
3 simpll 790 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  R  e.  DivRing )
4 simpr2 1068 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  Y  e.  B )
5 simpr3 1069 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  Y  =/=  .0.  )
6 abvneg.b . . . . . 6  |-  B  =  ( Base `  R
)
7 abvrec.z . . . . . 6  |-  .0.  =  ( 0g `  R )
8 eqid 2622 . . . . . 6  |-  ( invr `  R )  =  (
invr `  R )
96, 7, 8drnginvrcl 18764 . . . . 5  |-  ( ( R  e.  DivRing  /\  Y  e.  B  /\  Y  =/= 
.0.  )  ->  (
( invr `  R ) `  Y )  e.  B
)
103, 4, 5, 9syl3anc 1326 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  (
( invr `  R ) `  Y )  e.  B
)
11 abv0.a . . . . 5  |-  A  =  (AbsVal `  R )
12 eqid 2622 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
1311, 6, 12abvmul 18829 . . . 4  |-  ( ( F  e.  A  /\  X  e.  B  /\  ( ( invr `  R
) `  Y )  e.  B )  ->  ( F `  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  ( F `  ( ( invr `  R ) `  Y ) ) ) )
141, 2, 10, 13syl3anc 1326 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  ( F `  ( ( invr `  R ) `  Y ) ) ) )
1511, 6, 7, 8abvrec 18836 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( ( invr `  R ) `  Y ) )  =  ( 1  /  ( F `  Y )
) )
16153adantr1 1220 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( ( invr `  R ) `  Y ) )  =  ( 1  /  ( F `  Y )
) )
1716oveq2d 6666 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  (
( F `  X
)  x.  ( F `
 ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  (
1  /  ( F `
 Y ) ) ) )
1814, 17eqtrd 2656 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X
( .r `  R
) ( ( invr `  R ) `  Y
) ) )  =  ( ( F `  X )  x.  (
1  /  ( F `
 Y ) ) ) )
19 eqid 2622 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
206, 19, 7drngunit 18752 . . . . . 6  |-  ( R  e.  DivRing  ->  ( Y  e.  (Unit `  R )  <->  ( Y  e.  B  /\  Y  =/=  .0.  ) ) )
213, 20syl 17 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( Y  e.  (Unit `  R
)  <->  ( Y  e.  B  /\  Y  =/= 
.0.  ) ) )
224, 5, 21mpbir2and 957 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  Y  e.  (Unit `  R )
)
23 abvdiv.p . . . . 5  |-  ./  =  (/r
`  R )
246, 12, 19, 8, 23dvrval 18685 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  (Unit `  R
) )  ->  ( X  ./  Y )  =  ( X ( .r
`  R ) ( ( invr `  R
) `  Y )
) )
252, 22, 24syl2anc 693 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( X  ./  Y )  =  ( X ( .r
`  R ) ( ( invr `  R
) `  Y )
) )
2625fveq2d 6195 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X  ./  Y ) )  =  ( F `  ( X ( .r `  R ) ( (
invr `  R ) `  Y ) ) ) )
2711, 6abvcl 18824 . . . . 5  |-  ( ( F  e.  A  /\  X  e.  B )  ->  ( F `  X
)  e.  RR )
281, 2, 27syl2anc 693 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  X )  e.  RR )
2928recnd 10068 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  X )  e.  CC )
3011, 6abvcl 18824 . . . . 5  |-  ( ( F  e.  A  /\  Y  e.  B )  ->  ( F `  Y
)  e.  RR )
311, 4, 30syl2anc 693 . . . 4  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  Y )  e.  RR )
3231recnd 10068 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  Y )  e.  CC )
3311, 6, 7abvne0 18827 . . . 4  |-  ( ( F  e.  A  /\  Y  e.  B  /\  Y  =/=  .0.  )  -> 
( F `  Y
)  =/=  0 )
341, 4, 5, 33syl3anc 1326 . . 3  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  Y )  =/=  0 )
3529, 32, 34divrecd 10804 . 2  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  (
( F `  X
)  /  ( F `
 Y ) )  =  ( ( F `
 X )  x.  ( 1  /  ( F `  Y )
) ) )
3618, 26, 353eqtr4d 2666 1  |-  ( ( ( R  e.  DivRing  /\  F  e.  A )  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( F `  ( X  ./  Y ) )  =  ( ( F `  X )  /  ( F `  Y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    / cdiv 10684   Basecbs 15857   .rcmulr 15942   0gc0g 16100  Unitcui 18639   invrcinvr 18671  /rcdvr 18682   DivRingcdr 18747  AbsValcabv 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-ico 12181  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-abv 18817
This theorem is referenced by:  ostthlem1  25316
  Copyright terms: Public domain W3C validator