HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adj1 Structured version   Visualization version   Unicode version

Theorem adj1 28792
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adj1  |-  ( ( T  e.  dom  adjh  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  ( T `  B )
)  =  ( ( ( adjh `  T
) `  A )  .ih  B ) )

Proof of Theorem adj1
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funadj 28745 . . . . . . 7  |-  Fun  adjh
2 funfvop 6329 . . . . . . 7  |-  ( ( Fun  adjh  /\  T  e. 
dom  adjh )  ->  <. T , 
( adjh `  T ) >.  e.  adjh )
31, 2mpan 706 . . . . . 6  |-  ( T  e.  dom  adjh  ->  <. T ,  ( adjh `  T ) >.  e.  adjh )
4 dfadj2 28744 . . . . . 6  |-  adjh  =  { <. z ,  w >.  |  ( z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( z `  y
) )  =  ( ( w `  x
)  .ih  y )
) }
53, 4syl6eleq 2711 . . . . 5  |-  ( T  e.  dom  adjh  ->  <. T ,  ( adjh `  T ) >.  e.  { <. z ,  w >.  |  ( z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( z `
 y ) )  =  ( ( w `
 x )  .ih  y ) ) } )
6 fvex 6201 . . . . . 6  |-  ( adjh `  T )  e.  _V
7 feq1 6026 . . . . . . . 8  |-  ( z  =  T  ->  (
z : ~H --> ~H  <->  T : ~H
--> ~H ) )
8 fveq1 6190 . . . . . . . . . . 11  |-  ( z  =  T  ->  (
z `  y )  =  ( T `  y ) )
98oveq2d 6666 . . . . . . . . . 10  |-  ( z  =  T  ->  (
x  .ih  ( z `  y ) )  =  ( x  .ih  ( T `  y )
) )
109eqeq1d 2624 . . . . . . . . 9  |-  ( z  =  T  ->  (
( x  .ih  (
z `  y )
)  =  ( ( w `  x ) 
.ih  y )  <->  ( x  .ih  ( T `  y
) )  =  ( ( w `  x
)  .ih  y )
) )
11102ralbidv 2989 . . . . . . . 8  |-  ( z  =  T  ->  ( A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( z `  y ) )  =  ( ( w `  x )  .ih  y
)  <->  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( w `  x )  .ih  y
) ) )
127, 113anbi13d 1401 . . . . . . 7  |-  ( z  =  T  ->  (
( z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( z `
 y ) )  =  ( ( w `
 x )  .ih  y ) )  <->  ( T : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( w `  x ) 
.ih  y ) ) ) )
13 feq1 6026 . . . . . . . 8  |-  ( w  =  ( adjh `  T
)  ->  ( w : ~H --> ~H  <->  ( adjh `  T
) : ~H --> ~H )
)
14 fveq1 6190 . . . . . . . . . . 11  |-  ( w  =  ( adjh `  T
)  ->  ( w `  x )  =  ( ( adjh `  T
) `  x )
)
1514oveq1d 6665 . . . . . . . . . 10  |-  ( w  =  ( adjh `  T
)  ->  ( (
w `  x )  .ih  y )  =  ( ( ( adjh `  T
) `  x )  .ih  y ) )
1615eqeq2d 2632 . . . . . . . . 9  |-  ( w  =  ( adjh `  T
)  ->  ( (
x  .ih  ( T `  y ) )  =  ( ( w `  x )  .ih  y
)  <->  ( x  .ih  ( T `  y ) )  =  ( ( ( adjh `  T
) `  x )  .ih  y ) ) )
17162ralbidv 2989 . . . . . . . 8  |-  ( w  =  ( adjh `  T
)  ->  ( A. x  e.  ~H  A. y  e.  ~H  ( x  .ih  ( T `  y ) )  =  ( ( w `  x ) 
.ih  y )  <->  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( ( adjh `  T
) `  x )  .ih  y ) ) )
1813, 173anbi23d 1402 . . . . . . 7  |-  ( w  =  ( adjh `  T
)  ->  ( ( T : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( w `  x )  .ih  y
) )  <->  ( T : ~H --> ~H  /\  ( adjh `  T ) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( ( adjh `  T
) `  x )  .ih  y ) ) ) )
1912, 18opelopabg 4993 . . . . . 6  |-  ( ( T  e.  dom  adjh  /\  ( adjh `  T
)  e.  _V )  ->  ( <. T ,  (
adjh `  T ) >.  e.  { <. z ,  w >.  |  (
z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( z `  y ) )  =  ( ( w `  x )  .ih  y
) ) }  <->  ( T : ~H --> ~H  /\  ( adjh `  T ) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( ( adjh `  T
) `  x )  .ih  y ) ) ) )
206, 19mpan2 707 . . . . 5  |-  ( T  e.  dom  adjh  ->  (
<. T ,  ( adjh `  T ) >.  e.  { <. z ,  w >.  |  ( z : ~H --> ~H  /\  w : ~H --> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( z `
 y ) )  =  ( ( w `
 x )  .ih  y ) ) }  <-> 
( T : ~H --> ~H  /\  ( adjh `  T
) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( ( adjh `  T ) `  x
)  .ih  y )
) ) )
215, 20mpbid 222 . . . 4  |-  ( T  e.  dom  adjh  ->  ( T : ~H --> ~H  /\  ( adjh `  T ) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( x  .ih  ( T `  y ) )  =  ( ( ( adjh `  T
) `  x )  .ih  y ) ) )
2221simp3d 1075 . . 3  |-  ( T  e.  dom  adjh  ->  A. x  e.  ~H  A. y  e.  ~H  (
x  .ih  ( T `  y ) )  =  ( ( ( adjh `  T ) `  x
)  .ih  y )
)
23 oveq1 6657 . . . . 5  |-  ( x  =  A  ->  (
x  .ih  ( T `  y ) )  =  ( A  .ih  ( T `  y )
) )
24 fveq2 6191 . . . . . 6  |-  ( x  =  A  ->  (
( adjh `  T ) `  x )  =  ( ( adjh `  T
) `  A )
)
2524oveq1d 6665 . . . . 5  |-  ( x  =  A  ->  (
( ( adjh `  T
) `  x )  .ih  y )  =  ( ( ( adjh `  T
) `  A )  .ih  y ) )
2623, 25eqeq12d 2637 . . . 4  |-  ( x  =  A  ->  (
( x  .ih  ( T `  y )
)  =  ( ( ( adjh `  T
) `  x )  .ih  y )  <->  ( A  .ih  ( T `  y
) )  =  ( ( ( adjh `  T
) `  A )  .ih  y ) ) )
27 fveq2 6191 . . . . . 6  |-  ( y  =  B  ->  ( T `  y )  =  ( T `  B ) )
2827oveq2d 6666 . . . . 5  |-  ( y  =  B  ->  ( A  .ih  ( T `  y ) )  =  ( A  .ih  ( T `  B )
) )
29 oveq2 6658 . . . . 5  |-  ( y  =  B  ->  (
( ( adjh `  T
) `  A )  .ih  y )  =  ( ( ( adjh `  T
) `  A )  .ih  B ) )
3028, 29eqeq12d 2637 . . . 4  |-  ( y  =  B  ->  (
( A  .ih  ( T `  y )
)  =  ( ( ( adjh `  T
) `  A )  .ih  y )  <->  ( A  .ih  ( T `  B
) )  =  ( ( ( adjh `  T
) `  A )  .ih  B ) ) )
3126, 30rspc2v 3322 . . 3  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A. x  e. 
~H  A. y  e.  ~H  ( x  .ih  ( T `
 y ) )  =  ( ( (
adjh `  T ) `  x )  .ih  y
)  ->  ( A  .ih  ( T `  B
) )  =  ( ( ( adjh `  T
) `  A )  .ih  B ) ) )
3222, 31syl5com 31 . 2  |-  ( T  e.  dom  adjh  ->  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  ( T `  B )
)  =  ( ( ( adjh `  T
) `  A )  .ih  B ) ) )
33323impib 1262 1  |-  ( ( T  e.  dom  adjh  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  ( T `  B )
)  =  ( ( ( adjh `  T
) `  A )  .ih  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183   {copab 4712   dom cdm 5114   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   ~Hchil 27776    .ih csp 27779   adjhcado 27812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828  df-adjh 28708
This theorem is referenced by:  adj2  28793  adjadj  28795  hmopadj2  28800
  Copyright terms: Public domain W3C validator