HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjmul Structured version   Visualization version   Unicode version

Theorem adjmul 28951
Description: The adjoint of the scalar product of an operator. Theorem 3.11(ii) of [Beran] p. 106. (Contributed by NM, 21-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjmul  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  ( adjh `  ( A  .op  T ) )  =  ( ( * `
 A )  .op  ( adjh `  T )
) )

Proof of Theorem adjmul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmadjop 28747 . . 3  |-  ( T  e.  dom  adjh  ->  T : ~H --> ~H )
2 homulcl 28618 . . 3  |-  ( ( A  e.  CC  /\  T : ~H --> ~H )  ->  ( A  .op  T
) : ~H --> ~H )
31, 2sylan2 491 . 2  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  ( A  .op  T
) : ~H --> ~H )
4 cjcl 13845 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  e.  CC )
5 dmadjrn 28754 . . . 4  |-  ( T  e.  dom  adjh  ->  (
adjh `  T )  e.  dom  adjh )
6 dmadjop 28747 . . . 4  |-  ( (
adjh `  T )  e.  dom  adjh  ->  ( adjh `  T ) : ~H --> ~H )
75, 6syl 17 . . 3  |-  ( T  e.  dom  adjh  ->  (
adjh `  T ) : ~H --> ~H )
8 homulcl 28618 . . 3  |-  ( ( ( * `  A
)  e.  CC  /\  ( adjh `  T ) : ~H --> ~H )  -> 
( ( * `  A )  .op  ( adjh `  T ) ) : ~H --> ~H )
94, 7, 8syl2an 494 . 2  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  ( ( * `  A )  .op  ( adjh `  T ) ) : ~H --> ~H )
10 adj2 28793 . . . . . . . 8  |-  ( ( T  e.  dom  adjh  /\  x  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  x )  .ih  y
)  =  ( x 
.ih  ( ( adjh `  T ) `  y
) ) )
11103expb 1266 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  .ih  y )  =  ( x  .ih  ( (
adjh `  T ) `  y ) ) )
1211adantll 750 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( T `  x
)  .ih  y )  =  ( x  .ih  ( ( adjh `  T
) `  y )
) )
1312oveq2d 6666 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  ( A  x.  ( ( T `  x )  .ih  y ) )  =  ( A  x.  (
x  .ih  ( ( adjh `  T ) `  y ) ) ) )
141ffvelrnda 6359 . . . . . . . . 9  |-  ( ( T  e.  dom  adjh  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
15 ax-his3 27941 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( T `  x )  e.  ~H  /\  y  e.  ~H )  ->  (
( A  .h  ( T `  x )
)  .ih  y )  =  ( A  x.  ( ( T `  x )  .ih  y
) ) )
1614, 15syl3an2 1360 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( T  e.  dom  adjh  /\  x  e.  ~H )  /\  y  e.  ~H )  ->  ( ( A  .h  ( T `  x ) )  .ih  y )  =  ( A  x.  ( ( T `  x ) 
.ih  y ) ) )
17163exp 1264 . . . . . . 7  |-  ( A  e.  CC  ->  (
( T  e.  dom  adjh  /\  x  e.  ~H )  ->  ( y  e. 
~H  ->  ( ( A  .h  ( T `  x ) )  .ih  y )  =  ( A  x.  ( ( T `  x ) 
.ih  y ) ) ) ) )
1817expd 452 . . . . . 6  |-  ( A  e.  CC  ->  ( T  e.  dom  adjh  ->  ( x  e.  ~H  ->  ( y  e.  ~H  ->  ( ( A  .h  ( T `  x )
)  .ih  y )  =  ( A  x.  ( ( T `  x )  .ih  y
) ) ) ) ) )
1918imp43 621 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( A  .h  ( T `  x )
)  .ih  y )  =  ( A  x.  ( ( T `  x )  .ih  y
) ) )
20 simpll 790 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  A  e.  CC )
21 simprl 794 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  x  e.  ~H )
22 adjcl 28791 . . . . . . 7  |-  ( ( T  e.  dom  adjh  /\  y  e.  ~H )  ->  ( ( adjh `  T
) `  y )  e.  ~H )
2322ad2ant2l 782 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( adjh `  T ) `  y )  e.  ~H )
24 his52 27944 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  ~H  /\  (
( adjh `  T ) `  y )  e.  ~H )  ->  ( x  .ih  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) )  =  ( A  x.  ( x  .ih  ( (
adjh `  T ) `  y ) ) ) )
2520, 21, 23, 24syl3anc 1326 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
x  .ih  ( (
* `  A )  .h  ( ( adjh `  T
) `  y )
) )  =  ( A  x.  ( x 
.ih  ( ( adjh `  T ) `  y
) ) ) )
2613, 19, 253eqtr4d 2666 . . . 4  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( A  .h  ( T `  x )
)  .ih  y )  =  ( x  .ih  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) ) )
27 homval 28600 . . . . . . . 8  |-  ( ( A  e.  CC  /\  T : ~H --> ~H  /\  x  e.  ~H )  ->  ( ( A  .op  T ) `  x )  =  ( A  .h  ( T `  x ) ) )
281, 27syl3an2 1360 . . . . . . 7  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh  /\  x  e.  ~H )  ->  (
( A  .op  T
) `  x )  =  ( A  .h  ( T `  x ) ) )
29283expa 1265 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  x  e.  ~H )  ->  ( ( A 
.op  T ) `  x )  =  ( A  .h  ( T `
 x ) ) )
3029adantrr 753 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( A  .op  T
) `  x )  =  ( A  .h  ( T `  x ) ) )
3130oveq1d 6665 . . . 4  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( ( A  .op  T ) `  x ) 
.ih  y )  =  ( ( A  .h  ( T `  x ) )  .ih  y ) )
32 id 22 . . . . . . . 8  |-  ( y  e.  ~H  ->  y  e.  ~H )
33 homval 28600 . . . . . . . 8  |-  ( ( ( * `  A
)  e.  CC  /\  ( adjh `  T ) : ~H --> ~H  /\  y  e.  ~H )  ->  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y )  =  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) )
344, 7, 32, 33syl3an 1368 . . . . . . 7  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh  /\  y  e.  ~H )  ->  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y )  =  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) )
35343expa 1265 . . . . . 6  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  y  e.  ~H )  ->  ( ( ( * `  A ) 
.op  ( adjh `  T
) ) `  y
)  =  ( ( * `  A )  .h  ( ( adjh `  T ) `  y
) ) )
3635adantrl 752 . . . . 5  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y )  =  ( ( * `  A )  .h  (
( adjh `  T ) `  y ) ) )
3736oveq2d 6666 . . . 4  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
x  .ih  ( (
( * `  A
)  .op  ( adjh `  T ) ) `  y ) )  =  ( x  .ih  (
( * `  A
)  .h  ( (
adjh `  T ) `  y ) ) ) )
3826, 31, 373eqtr4d 2666 . . 3  |-  ( ( ( A  e.  CC  /\  T  e.  dom  adjh )  /\  ( x  e. 
~H  /\  y  e.  ~H ) )  ->  (
( ( A  .op  T ) `  x ) 
.ih  y )  =  ( x  .ih  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y ) ) )
3938ralrimivva 2971 . 2  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  A. x  e.  ~H  A. y  e.  ~H  (
( ( A  .op  T ) `  x ) 
.ih  y )  =  ( x  .ih  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y ) ) )
40 adjeq 28794 . 2  |-  ( ( ( A  .op  T
) : ~H --> ~H  /\  ( ( * `  A )  .op  ( adjh `  T ) ) : ~H --> ~H  /\  A. x  e.  ~H  A. y  e.  ~H  (
( ( A  .op  T ) `  x ) 
.ih  y )  =  ( x  .ih  (
( ( * `  A )  .op  ( adjh `  T ) ) `
 y ) ) )  ->  ( adjh `  ( A  .op  T
) )  =  ( ( * `  A
)  .op  ( adjh `  T ) ) )
413, 9, 39, 40syl3anc 1326 1  |-  ( ( A  e.  CC  /\  T  e.  dom  adjh )  ->  ( adjh `  ( A  .op  T ) )  =  ( ( * `
 A )  .op  ( adjh `  T )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934    x. cmul 9941   *ccj 13836   ~Hchil 27776    .h csm 27778    .ih csp 27779    .op chot 27796   adjhcado 27812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828  df-homul 28590  df-adjh 28708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator