MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn1 Structured version   Visualization version   Unicode version

Theorem tgbtwnconn1 25470
Description: Connectivity law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. In earlier presentations of Tarski's axioms, this theorem appeared as an additional axiom. It was derived from the other axioms by Gupta, 1965. (Contributed by Thierry Arnoux, 30-Apr-2019.)
Hypotheses
Ref Expression
tgbtwnconn1.p  |-  P  =  ( Base `  G
)
tgbtwnconn1.i  |-  I  =  (Itv `  G )
tgbtwnconn1.g  |-  ( ph  ->  G  e. TarskiG )
tgbtwnconn1.a  |-  ( ph  ->  A  e.  P )
tgbtwnconn1.b  |-  ( ph  ->  B  e.  P )
tgbtwnconn1.c  |-  ( ph  ->  C  e.  P )
tgbtwnconn1.d  |-  ( ph  ->  D  e.  P )
tgbtwnconn1.1  |-  ( ph  ->  A  =/=  B )
tgbtwnconn1.2  |-  ( ph  ->  B  e.  ( A I C ) )
tgbtwnconn1.3  |-  ( ph  ->  B  e.  ( A I D ) )
Assertion
Ref Expression
tgbtwnconn1  |-  ( ph  ->  ( C  e.  ( A I D )  \/  D  e.  ( A I C ) ) )

Proof of Theorem tgbtwnconn1
Dummy variables  e 
f  h  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )
21simpld 475 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  D  e.  ( A I e ) )
32adantr 481 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =  e )  ->  D  e.  ( A I e ) )
4 simpr 477 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =  e )  ->  C  =  e )
54oveq2d 6666 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =  e )  -> 
( A I C )  =  ( A I e ) )
63, 5eleqtrrd 2704 . . . . 5  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =  e )  ->  D  e.  ( A I C ) )
76olcd 408 . . . 4  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =  e )  -> 
( C  e.  ( A I D )  \/  D  e.  ( A I C ) ) )
8 simprl 794 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  C  e.  ( A I f ) )
98adantr 481 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  D  =  f )  ->  C  e.  ( A I f ) )
10 simpr 477 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  D  =  f )  ->  D  =  f )
1110oveq2d 6666 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  D  =  f )  -> 
( A I D )  =  ( A I f ) )
129, 11eleqtrrd 2704 . . . . 5  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  D  =  f )  ->  C  e.  ( A I D ) )
1312orcd 407 . . . 4  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  D  =  f )  -> 
( C  e.  ( A I D )  \/  D  e.  ( A I C ) ) )
14 df-ne 2795 . . . . . 6  |-  ( C  =/=  e  <->  -.  C  =  e )
15 tgbtwnconn1.p . . . . . . . . . . 11  |-  P  =  ( Base `  G
)
16 tgbtwnconn1.i . . . . . . . . . . 11  |-  I  =  (Itv `  G )
17 tgbtwnconn1.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e. TarskiG )
1817ad4antr 768 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  G  e. TarskiG )
1918ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  G  e. TarskiG )
20 tgbtwnconn1.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  P )
2120ad4antr 768 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  A  e.  P )
2221ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  A  e.  P )
23 tgbtwnconn1.b . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  P )
2423ad4antr 768 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  B  e.  P )
2524ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  B  e.  P )
26 tgbtwnconn1.c . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  P )
2726ad4antr 768 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  C  e.  P )
2827ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  C  e.  P )
29 tgbtwnconn1.d . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  P )
3029ad4antr 768 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  D  e.  P )
3130ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  D  e.  P )
32 simp-11l 820 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  ph )
33 tgbtwnconn1.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  =/=  B )
3432, 33syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  A  =/=  B )
35 tgbtwnconn1.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ( A I C ) )
3632, 35syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  B  e.  ( A I C ) )
37 tgbtwnconn1.3 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ( A I D ) )
3832, 37syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  B  e.  ( A I D ) )
39 eqid 2622 . . . . . . . . . . 11  |-  ( dist `  G )  =  (
dist `  G )
40 simp-4r 807 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  e  e.  P )
4140ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  e  e.  P )
42 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  f  e.  P )
4342ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  f  e.  P )
44 simp-6r 811 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  h  e.  P )
45 simp-4r 807 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  j  e.  P )
462ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  D  e.  ( A I e ) )
478ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  C  e.  ( A I f ) )
48 simp-5r 809 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  ( e  e.  ( A I h )  /\  ( e ( dist `  G
) h )  =  ( B ( dist `  G ) C ) ) )
4948simpld 475 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  e  e.  ( A I h ) )
50 simpllr 799 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )
5150simpld 475 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  f  e.  ( A I j ) )
521simprd 479 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) )
5352ad7antr 774 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  ( D
( dist `  G )
e )  =  ( D ( dist `  G
) C ) )
5415, 39, 16, 19, 31, 41, 31, 28, 53tgcgrcomlr 25375 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  ( e
( dist `  G ) D )  =  ( C ( dist `  G
) D ) )
55 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) )
5655ad7antr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  ( C
( dist `  G )
f )  =  ( C ( dist `  G
) D ) )
5748simprd 479 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  ( e
( dist `  G )
h )  =  ( B ( dist `  G
) C ) )
5850simprd 479 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  ( f
( dist `  G )
j )  =  ( B ( dist `  G
) D ) )
59 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  x  e.  P )
60 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  x  e.  ( C I e ) )
61 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  x  e.  ( D I f ) )
62 simp-7r 813 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  C  =/=  e )
6315, 16, 19, 22, 25, 28, 31, 34, 36, 38, 39, 41, 43, 44, 45, 46, 47, 49, 51, 54, 56, 57, 58, 59, 60, 61, 62tgbtwnconn1lem3 25469 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  /\  x  e.  P )  /\  (
x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )  ->  D  =  f )
6415, 39, 16, 18, 21, 27, 42, 8tgbtwncom 25383 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  C  e.  ( f I A ) )
6515, 39, 16, 18, 21, 30, 40, 2tgbtwncom 25383 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  D  e.  ( e I A ) )
6615, 39, 16, 18, 42, 40, 21, 27, 30, 64, 65axtgpasch 25366 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  E. x  e.  P  ( x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )
6766ad5antr 770 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  ->  E. x  e.  P  ( x  e.  ( C I e )  /\  x  e.  ( D I f ) ) )
6863, 67r19.29a 3078 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  /\  j  e.  P
)  /\  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )  ->  D  =  f )
6915, 39, 16, 18, 21, 42, 24, 30axtgsegcon 25363 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  E. j  e.  P  ( f  e.  ( A I j )  /\  ( f ( dist `  G
) j )  =  ( B ( dist `  G ) D ) ) )
7069ad3antrrr 766 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  ->  E. j  e.  P  ( f  e.  ( A I j )  /\  ( f (
dist `  G )
j )  =  ( B ( dist `  G
) D ) ) )
7168, 70r19.29a 3078 . . . . . . . 8  |-  ( ( ( ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  /\  h  e.  P )  /\  (
e  e.  ( A I h )  /\  ( e ( dist `  G ) h )  =  ( B (
dist `  G ) C ) ) )  ->  D  =  f )
7215, 39, 16, 18, 21, 40, 24, 27axtgsegcon 25363 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  E. h  e.  P  ( e  e.  ( A I h )  /\  ( e ( dist `  G
) h )  =  ( B ( dist `  G ) C ) ) )
7372adantr 481 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  ->  E. h  e.  P  ( e  e.  ( A I h )  /\  ( e ( dist `  G
) h )  =  ( B ( dist `  G ) C ) ) )
7471, 73r19.29a 3078 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  /\  C  =/=  e )  ->  D  =  f )
7574ex 450 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  ( C  =/=  e  ->  D  =  f ) )
7614, 75syl5bir 233 . . . . 5  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  ( -.  C  =  e  ->  D  =  f ) )
7776orrd 393 . . . 4  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  ( C  =  e  \/  D  =  f )
)
787, 13, 77mpjaodan 827 . . 3  |-  ( ( ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  /\  f  e.  P )  /\  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )  ->  ( C  e.  ( A I D )  \/  D  e.  ( A I C ) ) )
7915, 39, 16, 17, 20, 26, 26, 29axtgsegcon 25363 . . . 4  |-  ( ph  ->  E. f  e.  P  ( C  e.  ( A I f )  /\  ( C (
dist `  G )
f )  =  ( C ( dist `  G
) D ) ) )
8079ad2antrr 762 . . 3  |-  ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  ->  E. f  e.  P  ( C  e.  ( A I f )  /\  ( C ( dist `  G
) f )  =  ( C ( dist `  G ) D ) ) )
8178, 80r19.29a 3078 . 2  |-  ( ( ( ph  /\  e  e.  P )  /\  ( D  e.  ( A I e )  /\  ( D ( dist `  G
) e )  =  ( D ( dist `  G ) C ) ) )  ->  ( C  e.  ( A I D )  \/  D  e.  ( A I C ) ) )
8215, 39, 16, 17, 20, 29, 29, 26axtgsegcon 25363 . 2  |-  ( ph  ->  E. e  e.  P  ( D  e.  ( A I e )  /\  ( D (
dist `  G )
e )  =  ( D ( dist `  G
) C ) ) )
8381, 82r19.29a 3078 1  |-  ( ph  ->  ( C  e.  ( A I D )  \/  D  e.  ( A I C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406
This theorem is referenced by:  tgbtwnconn2  25471  tgbtwnconnln1  25475  hltr  25505  hlbtwn  25506
  Copyright terms: Public domain W3C validator