MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blval2 Structured version   Visualization version   Unicode version

Theorem blval2 22367
Description: The ball around a point  P, alternative definition. (Contributed by Thierry Arnoux, 7-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blval2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( P ( ball `  D
) R )  =  ( ( `' D " ( 0 [,) R
) ) " { P } ) )

Proof of Theorem blval2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rpxr 11840 . . 3  |-  ( R  e.  RR+  ->  R  e. 
RR* )
2 blvalps 22190 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e. 
RR* )  ->  ( P ( ball `  D
) R )  =  { x  e.  X  |  ( P D x )  <  R } )
31, 2syl3an3 1361 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( P ( ball `  D
) R )  =  { x  e.  X  |  ( P D x )  <  R } )
4 nfv 1843 . . 3  |-  F/ x
( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )
5 nfcv 2764 . . 3  |-  F/_ x
( ( `' D " ( 0 [,) R
) ) " { P } )
6 nfrab1 3122 . . 3  |-  F/_ x { x  e.  X  |  ( P D x )  <  R }
7 psmetf 22111 . . . . . . 7  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
8 ffn 6045 . . . . . . 7  |-  ( D : ( X  X.  X ) --> RR*  ->  D  Fn  ( X  X.  X ) )
9 elpreima 6337 . . . . . . 7  |-  ( D  Fn  ( X  X.  X )  ->  ( <. P ,  x >.  e.  ( `' D "
( 0 [,) R
) )  <->  ( <. P ,  x >.  e.  ( X  X.  X )  /\  ( D `  <. P ,  x >. )  e.  ( 0 [,) R ) ) ) )
107, 8, 93syl 18 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ( <. P ,  x >.  e.  ( `' D " ( 0 [,) R ) )  <-> 
( <. P ,  x >.  e.  ( X  X.  X )  /\  ( D `  <. P ,  x >. )  e.  ( 0 [,) R ) ) ) )
11103ad2ant1 1082 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( <. P ,  x >.  e.  ( `' D "
( 0 [,) R
) )  <->  ( <. P ,  x >.  e.  ( X  X.  X )  /\  ( D `  <. P ,  x >. )  e.  ( 0 [,) R ) ) ) )
12 opelxp 5146 . . . . . . . . . 10  |-  ( <. P ,  x >.  e.  ( X  X.  X
)  <->  ( P  e.  X  /\  x  e.  X ) )
1312baib 944 . . . . . . . . 9  |-  ( P  e.  X  ->  ( <. P ,  x >.  e.  ( X  X.  X
)  <->  x  e.  X
) )
14133ad2ant2 1083 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( <. P ,  x >.  e.  ( X  X.  X
)  <->  x  e.  X
) )
1514biimpd 219 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( <. P ,  x >.  e.  ( X  X.  X
)  ->  x  e.  X ) )
1615adantrd 484 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( (
<. P ,  x >.  e.  ( X  X.  X
)  /\  ( D `  <. P ,  x >. )  e.  ( 0 [,) R ) )  ->  x  e.  X
) )
17 simprl 794 . . . . . . 7  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  (
x  e.  X  /\  ( P D x )  <  R ) )  ->  x  e.  X
)
1817ex 450 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( ( x  e.  X  /\  ( P D x )  <  R )  ->  x  e.  X )
)
19 simpl2 1065 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  P  e.  X )
2019, 13syl 17 . . . . . . . 8  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  ( <. P ,  x >.  e.  ( X  X.  X
)  <->  x  e.  X
) )
21 df-ov 6653 . . . . . . . . . 10  |-  ( P D x )  =  ( D `  <. P ,  x >. )
2221eleq1i 2692 . . . . . . . . 9  |-  ( ( P D x )  e.  ( 0 [,) R )  <->  ( D `  <. P ,  x >. )  e.  ( 0 [,) R ) )
23 0xr 10086 . . . . . . . . . . 11  |-  0  e.  RR*
24 simpl3 1066 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  R  e.  RR+ )
2524rpxrd 11873 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  R  e.  RR* )
26 elico1 12218 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\  R  e.  RR* )  ->  (
( P D x )  e.  ( 0 [,) R )  <->  ( ( P D x )  e. 
RR*  /\  0  <_  ( P D x )  /\  ( P D x )  <  R
) ) )
2723, 25, 26sylancr 695 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  (
( P D x )  e.  ( 0 [,) R )  <->  ( ( P D x )  e. 
RR*  /\  0  <_  ( P D x )  /\  ( P D x )  <  R
) ) )
28 simpl1 1064 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  D  e.  (PsMet `  X )
)
29 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  x  e.  X )
30 psmetcl 22112 . . . . . . . . . . . . . 14  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  x  e.  X )  ->  ( P D x )  e. 
RR* )
3128, 19, 29, 30syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  ( P D x )  e. 
RR* )
32 psmetge0 22117 . . . . . . . . . . . . . 14  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  x  e.  X )  ->  0  <_  ( P D x ) )
3328, 19, 29, 32syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  0  <_  ( P D x ) )
3431, 33jca 554 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  (
( P D x )  e.  RR*  /\  0  <_  ( P D x ) ) )
3534biantrurd 529 . . . . . . . . . . 11  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  (
( P D x )  <  R  <->  ( (
( P D x )  e.  RR*  /\  0  <_  ( P D x ) )  /\  ( P D x )  < 
R ) ) )
36 df-3an 1039 . . . . . . . . . . 11  |-  ( ( ( P D x )  e.  RR*  /\  0  <_  ( P D x )  /\  ( P D x )  < 
R )  <->  ( (
( P D x )  e.  RR*  /\  0  <_  ( P D x ) )  /\  ( P D x )  < 
R ) )
3735, 36syl6rbbr 279 . . . . . . . . . 10  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  (
( ( P D x )  e.  RR*  /\  0  <_  ( P D x )  /\  ( P D x )  <  R )  <->  ( P D x )  < 
R ) )
3827, 37bitrd 268 . . . . . . . . 9  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  (
( P D x )  e.  ( 0 [,) R )  <->  ( P D x )  < 
R ) )
3922, 38syl5bbr 274 . . . . . . . 8  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  (
( D `  <. P ,  x >. )  e.  ( 0 [,) R
)  <->  ( P D x )  <  R
) )
4020, 39anbi12d 747 . . . . . . 7  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  /\  x  e.  X )  ->  (
( <. P ,  x >.  e.  ( X  X.  X )  /\  ( D `  <. P ,  x >. )  e.  ( 0 [,) R ) )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
4140ex 450 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( x  e.  X  ->  (
( <. P ,  x >.  e.  ( X  X.  X )  /\  ( D `  <. P ,  x >. )  e.  ( 0 [,) R ) )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) ) )
4216, 18, 41pm5.21ndd 369 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( (
<. P ,  x >.  e.  ( X  X.  X
)  /\  ( D `  <. P ,  x >. )  e.  ( 0 [,) R ) )  <-> 
( x  e.  X  /\  ( P D x )  <  R ) ) )
4311, 42bitrd 268 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( <. P ,  x >.  e.  ( `' D "
( 0 [,) R
) )  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
44 vex 3203 . . . . . 6  |-  x  e. 
_V
45 elimasng 5491 . . . . . 6  |-  ( ( P  e.  X  /\  x  e.  _V )  ->  ( x  e.  ( ( `' D "
( 0 [,) R
) ) " { P } )  <->  <. P ,  x >.  e.  ( `' D " ( 0 [,) R ) ) ) )
4644, 45mpan2 707 . . . . 5  |-  ( P  e.  X  ->  (
x  e.  ( ( `' D " ( 0 [,) R ) )
" { P }
)  <->  <. P ,  x >.  e.  ( `' D " ( 0 [,) R
) ) ) )
47463ad2ant2 1083 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( x  e.  ( ( `' D " ( 0 [,) R ) )
" { P }
)  <->  <. P ,  x >.  e.  ( `' D " ( 0 [,) R
) ) ) )
48 rabid 3116 . . . . 5  |-  ( x  e.  { x  e.  X  |  ( P D x )  < 
R }  <->  ( x  e.  X  /\  ( P D x )  < 
R ) )
4948a1i 11 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( x  e.  { x  e.  X  |  ( P D x )  < 
R }  <->  ( x  e.  X  /\  ( P D x )  < 
R ) ) )
5043, 47, 493bitr4d 300 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( x  e.  ( ( `' D " ( 0 [,) R ) )
" { P }
)  <->  x  e.  { x  e.  X  |  ( P D x )  < 
R } ) )
514, 5, 6, 50eqrd 3622 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( ( `' D " ( 0 [,) R ) )
" { P }
)  =  { x  e.  X  |  ( P D x )  < 
R } )
523, 51eqtr4d 2659 1  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( P ( ball `  D
) R )  =  ( ( `' D " ( 0 [,) R
) ) " { P } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   RR*cxr 10073    < clt 10074    <_ cle 10075   RR+crp 11832   [,)cico 12177  PsMetcpsmet 19730   ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-psmet 19738  df-bl 19741
This theorem is referenced by:  elbl4  22368  metustbl  22371  psmetutop  22372
  Copyright terms: Public domain W3C validator