| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1110 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1110.3 |
|
| bnj1110.7 |
|
| bnj1110.18 |
|
| bnj1110.19 |
|
| bnj1110.26 |
|
| Ref | Expression |
|---|---|
| bnj1110 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1110.7 |
. . . . . . . . 9
| |
| 2 | 1 | bnj1098 30854 |
. . . . . . . 8
|
| 3 | bnj219 30801 |
. . . . . . . . . . 11
| |
| 4 | 3 | adantl 482 |
. . . . . . . . . 10
|
| 5 | 4 | ancli 574 |
. . . . . . . . 9
|
| 6 | df-3an 1039 |
. . . . . . . . 9
| |
| 7 | 5, 6 | sylibr 224 |
. . . . . . . 8
|
| 8 | 2, 7 | bnj1023 30851 |
. . . . . . 7
|
| 9 | bnj1110.3 |
. . . . . . . . . . . 12
| |
| 10 | 9 | bnj1232 30874 |
. . . . . . . . . . 11
|
| 11 | 10 | 3ad2ant3 1084 |
. . . . . . . . . 10
|
| 12 | bnj1110.19 |
. . . . . . . . . . 11
| |
| 13 | 12 | bnj1232 30874 |
. . . . . . . . . 10
|
| 14 | 11, 13 | anim12ci 591 |
. . . . . . . . 9
|
| 15 | 14 | anim2i 593 |
. . . . . . . 8
|
| 16 | 3anass 1042 |
. . . . . . . 8
| |
| 17 | 15, 16 | sylibr 224 |
. . . . . . 7
|
| 18 | 8, 17 | bnj1101 30855 |
. . . . . 6
|
| 19 | 3simpb 1059 |
. . . . . . . . 9
| |
| 20 | 12 | bnj1235 30875 |
. . . . . . . . . . 11
|
| 21 | 20 | ad2antll 765 |
. . . . . . . . . 10
|
| 22 | bnj1110.18 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | sylib 208 |
. . . . . . . . 9
|
| 24 | 19, 23 | syl5 34 |
. . . . . . . 8
|
| 25 | 24 | a2i 14 |
. . . . . . 7
|
| 26 | pm3.43 906 |
. . . . . . 7
| |
| 27 | 25, 26 | mpdan 702 |
. . . . . 6
|
| 28 | 18, 27 | bnj101 30789 |
. . . . 5
|
| 29 | 12 | bnj1247 30879 |
. . . . . . 7
|
| 30 | 29 | ad2antll 765 |
. . . . . 6
|
| 31 | pm3.43i 472 |
. . . . . 6
| |
| 32 | 30, 31 | ax-mp 5 |
. . . . 5
|
| 33 | 28, 32 | bnj101 30789 |
. . . 4
|
| 34 | fndm 5990 |
. . . . . . . . 9
| |
| 35 | 9, 34 | bnj770 30833 |
. . . . . . . 8
|
| 36 | 35 | 3ad2ant3 1084 |
. . . . . . 7
|
| 37 | 36 | ad2antrl 764 |
. . . . . 6
|
| 38 | 37 | eleq2d 2687 |
. . . . 5
|
| 39 | pm3.43i 472 |
. . . . 5
| |
| 40 | 38, 39 | ax-mp 5 |
. . . 4
|
| 41 | 33, 40 | bnj101 30789 |
. . 3
|
| 42 | bnj268 30775 |
. . . . . 6
| |
| 43 | bnj251 30768 |
. . . . . 6
| |
| 44 | 42, 43 | bitr3i 266 |
. . . . 5
|
| 45 | 44 | imbi2i 326 |
. . . 4
|
| 46 | 45 | exbii 1774 |
. . 3
|
| 47 | 41, 46 | mpbir 221 |
. 2
|
| 48 | simp1 1061 |
. . . 4
| |
| 49 | 48 | bnj706 30824 |
. . 3
|
| 50 | simp2 1062 |
. . . 4
| |
| 51 | 50 | bnj706 30824 |
. . 3
|
| 52 | bnj258 30774 |
. . . . 5
| |
| 53 | 52 | simprbi 480 |
. . . 4
|
| 54 | bnj642 30818 |
. . . . 5
| |
| 55 | 49, 54 | mpbird 247 |
. . . 4
|
| 56 | bnj645 30820 |
. . . . 5
| |
| 57 | bnj1110.26 |
. . . . 5
| |
| 58 | 56, 57 | sylib 208 |
. . . 4
|
| 59 | 53, 55, 58 | mp2and 715 |
. . 3
|
| 60 | 49, 51, 59 | 3jca 1242 |
. 2
|
| 61 | 47, 60 | bnj1023 30851 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-fn 5891 df-om 7066 df-bnj17 30753 |
| This theorem is referenced by: bnj1118 31052 |
| Copyright terms: Public domain | W3C validator |