![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3simpb | Structured version Visualization version Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3simpb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancomb 1047 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3simpa 1058 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 207 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: 3adant2 1080 3adantl2 1218 3adantr2 1221 fpropnf1 6524 cfcof 9096 axcclem 9279 enqeq 9756 ltleletr 10130 ixxssixx 12189 prodmolem2 14665 prodmo 14666 zprod 14667 muldvds1 15006 dvds2add 15015 dvds2sub 15016 dvdstr 15018 initoeu2lem2 16665 pospropd 17134 csrgbinom 18546 smadiadetglem2 20478 ismbf3d 23421 mbfi1flimlem 23489 colinearalg 25790 frusgrnn0 26467 wlkwwlkinj 26782 2wlkond 26833 2pthond 26838 2pthon3v 26839 umgr2adedgwlkonALT 26843 usgr2wspthons3 26857 vdgn1frgrv2 27160 frgr2wwlkeqm 27195 extwwlkfab 27223 bnj967 31015 bnj1110 31050 cgr3permute3 32154 cgr3com 32160 brofs2 32184 areacirclem4 33503 paddasslem14 35119 lhpexle1 35294 cdlemk19w 36260 ismrc 37264 iocinico 37797 gneispb 38429 fourierdlem113 40436 sigaras 41044 sigarms 41045 leltletr 41308 lincresunit3lem3 42263 lincresunit3 42270 |
Copyright terms: Public domain | W3C validator |