Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj158 Structured version   Visualization version   Unicode version

Theorem bnj158 30797
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj158.1  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj158  |-  ( m  e.  D  ->  E. p  e.  om  m  =  suc  p )
Distinct variable group:    m, p
Allowed substitution hints:    D( m, p)

Proof of Theorem bnj158
StepHypRef Expression
1 bnj158.1 . . . 4  |-  D  =  ( om  \  { (/)
} )
21eleq2i 2693 . . 3  |-  ( m  e.  D  <->  m  e.  ( om  \  { (/) } ) )
3 eldifsn 4317 . . 3  |-  ( m  e.  ( om  \  { (/)
} )  <->  ( m  e.  om  /\  m  =/=  (/) ) )
42, 3bitri 264 . 2  |-  ( m  e.  D  <->  ( m  e.  om  /\  m  =/=  (/) ) )
5 nnsuc 7082 . 2  |-  ( ( m  e.  om  /\  m  =/=  (/) )  ->  E. p  e.  om  m  =  suc  p )
64, 5sylbi 207 1  |-  ( m  e.  D  ->  E. p  e.  om  m  =  suc  p )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   (/)c0 3915   {csn 4177   suc csuc 5725   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066
This theorem is referenced by:  bnj168  30798  bnj600  30989  bnj986  31024
  Copyright terms: Public domain W3C validator