Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj579 Structured version   Visualization version   Unicode version

Theorem bnj579 30984
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj579.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
bnj579.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj579.3  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj579  |-  ( n  e.  D  ->  E* f ( f  Fn  n  /\  ph  /\  ps ) )
Distinct variable groups:    A, f,
i    D, f    R, f, i    f, n, i   
x, f    y, f,
i
Allowed substitution hints:    ph( x, y, f, i, n)    ps( x, y, f, i, n)    A( x, y, n)    D( x, y, i, n)    R( x, y, n)

Proof of Theorem bnj579
Dummy variables  k 
g  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj579.1 . 2  |-  ( ph  <->  ( f `  (/) )  = 
pred ( x ,  A ,  R ) )
2 bnj579.2 . 2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 biid 251 . 2  |-  ( ( f  Fn  n  /\  ph 
/\  ps )  <->  ( f  Fn  n  /\  ph  /\  ps ) )
4 biid 251 . 2  |-  ( [. g  /  f ]. ph  <->  [. g  / 
f ]. ph )
5 biid 251 . 2  |-  ( [. g  /  f ]. ps  <->  [. g  /  f ]. ps )
6 biid 251 . 2  |-  ( [. g  /  f ]. (
f  Fn  n  /\  ph 
/\  ps )  <->  [. g  / 
f ]. ( f  Fn  n  /\  ph  /\  ps ) )
7 bnj579.3 . 2  |-  D  =  ( om  \  { (/)
} )
8 biid 251 . 2  |-  ( ( ( n  e.  D  /\  ( f  Fn  n  /\  ph  /\  ps )  /\  [. g  /  f ]. ( f  Fn  n  /\  ph  /\  ps )
)  ->  ( f `  j )  =  ( g `  j ) )  <->  ( ( n  e.  D  /\  (
f  Fn  n  /\  ph 
/\  ps )  /\  [. g  /  f ]. (
f  Fn  n  /\  ph 
/\  ps ) )  -> 
( f `  j
)  =  ( g `
 j ) ) )
9 biid 251 . 2  |-  ( A. k  e.  n  (
k  _E  j  ->  [. k  /  j ]. ( ( n  e.  D  /\  ( f  Fn  n  /\  ph  /\ 
ps )  /\  [. g  /  f ]. (
f  Fn  n  /\  ph 
/\  ps ) )  -> 
( f `  j
)  =  ( g `
 j ) ) )  <->  A. k  e.  n  ( k  _E  j  ->  [. k  /  j ]. ( ( n  e.  D  /\  ( f  Fn  n  /\  ph  /\ 
ps )  /\  [. g  /  f ]. (
f  Fn  n  /\  ph 
/\  ps ) )  -> 
( f `  j
)  =  ( g `
 j ) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9bnj580 30983 1  |-  ( n  e.  D  ->  E* f ( f  Fn  n  /\  ph  /\  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   E*wmo 2471   A.wral 2912   [.wsbc 3435    \ cdif 3571   (/)c0 3915   {csn 4177   U_ciun 4520   class class class wbr 4653    _E cep 5028   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-om 7066  df-bnj17 30753
This theorem is referenced by:  bnj600  30989
  Copyright terms: Public domain W3C validator