Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj906 Structured version   Visualization version   Unicode version

Theorem bnj906 31000
Description: Property of  trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj906  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)

Proof of Theorem bnj906
Dummy variables  f 
i  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1onn 7719 . . . . . . . 8  |-  1o  e.  om
2 1n0 7575 . . . . . . . 8  |-  1o  =/=  (/)
3 eldifsn 4317 . . . . . . . 8  |-  ( 1o  e.  ( om  \  { (/)
} )  <->  ( 1o  e.  om  /\  1o  =/=  (/) ) )
41, 2, 3mpbir2an 955 . . . . . . 7  |-  1o  e.  ( om  \  { (/) } )
54ne0ii 3923 . . . . . 6  |-  ( om 
\  { (/) } )  =/=  (/)
6 biid 251 . . . . . . 7  |-  ( ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
7 biid 251 . . . . . . 7  |-  ( A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )
8 eqid 2622 . . . . . . 7  |-  ( om 
\  { (/) } )  =  ( om  \  { (/)
} )
96, 7, 8bnj852 30991 . . . . . 6  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n  e.  ( om  \  { (/) } ) E! f ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
10 r19.2z 4060 . . . . . 6  |-  ( ( ( om  \  { (/)
} )  =/=  (/)  /\  A. n  e.  ( om  \  { (/) } ) E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )  ->  E. n  e.  ( om  \  { (/)
} ) E! f ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
115, 9, 10sylancr 695 . . . . 5  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. n  e.  ( om  \  { (/) } ) E! f ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
12 euex 2494 . . . . 5  |-  ( E! f ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  ->  E. f ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1311, 12bnj31 30785 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. n  e.  ( om  \  { (/) } ) E. f ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
14 rexcom4 3225 . . . 4  |-  ( E. n  e.  ( om 
\  { (/) } ) E. f ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  <->  E. f E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1513, 14sylib 208 . . 3  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. f E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
16 abid 2610 . . 3  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  <->  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1715, 16bnj1198 30866 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  E. f  f  e. 
{ f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } )
18 simp2 1062 . . . . . . 7  |-  ( ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  ->  ( f `  (/) )  =  pred ( X ,  A ,  R ) )
1918reximi 3011 . . . . . 6  |-  ( E. n  e.  ( om 
\  { (/) } ) ( f  Fn  n  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )  ->  E. n  e.  ( om  \  { (/) } ) ( f `  (/) )  =  pred ( X ,  A ,  R ) )
2016, 19sylbi 207 . . . . 5  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  E. n  e.  ( om  \  { (/)
} ) ( f `
 (/) )  =  pred ( X ,  A ,  R ) )
21 df-rex 2918 . . . . . 6  |-  ( E. n  e.  ( om 
\  { (/) } ) ( f `  (/) )  = 
pred ( X ,  A ,  R )  <->  E. n ( n  e.  ( om  \  { (/)
} )  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )
) )
22 19.41v 1914 . . . . . . 7  |-  ( E. n ( n  e.  ( om  \  { (/)
} )  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )
)  <->  ( E. n  n  e.  ( om  \  { (/) } )  /\  ( f `  (/) )  = 
pred ( X ,  A ,  R )
) )
2322simprbi 480 . . . . . 6  |-  ( E. n ( n  e.  ( om  \  { (/)
} )  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )
)  ->  ( f `  (/) )  =  pred ( X ,  A ,  R ) )
2421, 23sylbi 207 . . . . 5  |-  ( E. n  e.  ( om 
\  { (/) } ) ( f `  (/) )  = 
pred ( X ,  A ,  R )  ->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2520, 24syl 17 . . . 4  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  ( f `  (/) )  =  pred ( X ,  A ,  R ) )
26 eqid 2622 . . . . . . 7  |-  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  =  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }
278, 26bnj900 30999 . . . . . 6  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  (/)  e.  dom  f )
28 fveq2 6191 . . . . . . 7  |-  ( i  =  (/)  ->  ( f `
 i )  =  ( f `  (/) ) )
2928ssiun2s 4564 . . . . . 6  |-  ( (/)  e.  dom  f  ->  (
f `  (/) )  C_  U_ i  e.  dom  f
( f `  i
) )
3027, 29syl 17 . . . . 5  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  ( f `  (/) )  C_  U_ i  e.  dom  f ( f `
 i ) )
31 ssiun2 4563 . . . . . 6  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  U_ i  e. 
dom  f ( f `
 i )  C_  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i ) )
326, 7, 8, 26bnj882 30996 . . . . . 6  |-  trCl ( X ,  A ,  R )  =  U_ f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) } U_ i  e. 
dom  f ( f `
 i )
3331, 32syl6sseqr 3652 . . . . 5  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  U_ i  e. 
dom  f ( f `
 i )  C_  trCl ( X ,  A ,  R ) )
3430, 33sstrd 3613 . . . 4  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  ( f `  (/) )  C_  trCl ( X ,  A ,  R ) )
3525, 34eqsstr3d 3640 . . 3  |-  ( f  e.  { f  |  E. n  e.  ( om  \  { (/) } ) ( f  Fn  n  /\  ( f `
 (/) )  =  pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  pred ( X ,  A ,  R
)  C_  trCl ( X ,  A ,  R
) )
3635exlimiv 1858 . 2  |-  ( E. f  f  e.  {
f  |  E. n  e.  ( om  \  { (/)
} ) ( f  Fn  n  /\  (
f `  (/) )  = 
pred ( X ,  A ,  R )  /\  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) }  ->  pred ( X ,  A ,  R
)  C_  trCl ( X ,  A ,  R
) )
3717, 36syl 17 1  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  pred ( X ,  A ,  R )  C_ 
trCl ( X ,  A ,  R )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   (/)c0 3915   {csn 4177   U_ciun 4520   dom cdm 5114   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065   1oc1o 7553    predc-bnj14 30754    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761
This theorem is referenced by:  bnj1137  31063  bnj1136  31065  bnj1175  31072  bnj1177  31074  bnj1413  31103  bnj1408  31104  bnj1417  31109  bnj1442  31117  bnj1452  31120
  Copyright terms: Public domain W3C validator