MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkonprop Structured version   Visualization version   Unicode version

Theorem wlkonprop 26554
Description: Properties of a walk between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 31-Dec-2020.) (Proof shortened by AV, 16-Jan-2021.)
Hypothesis
Ref Expression
wlkson.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
wlkonprop  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) ) )

Proof of Theorem wlkonprop
Dummy variables  a 
b  f  g  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkson.v . . . . . 6  |-  V  =  (Vtx `  G )
2 fvex 6201 . . . . . 6  |-  (Vtx `  G )  e.  _V
31, 2eqeltri 2697 . . . . 5  |-  V  e. 
_V
4 df-wlkson 26496 . . . . . 6  |- WalksOn  =  ( g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { <. f ,  p >.  |  (
f (Walks `  g
) p  /\  (
p `  0 )  =  a  /\  (
p `  ( # `  f
) )  =  b ) } ) )
5 3simpc 1060 . . . . . . 7  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  ->  ( A  e.  V  /\  B  e.  V
) )
61wlkson 26552 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A (WalksOn `  G
) B )  =  { <. f ,  p >.  |  ( f (Walks `  G ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  B ) } )
75, 6syl 17 . . . . . 6  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  ->  ( A (WalksOn `  G
) B )  =  { <. f ,  p >.  |  ( f (Walks `  G ) p  /\  ( p `  0
)  =  A  /\  ( p `  ( # `
 f ) )  =  B ) } )
8 fveq2 6191 . . . . . . 7  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
98, 1syl6eqr 2674 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
10 fveq2 6191 . . . . . . . 8  |-  ( g  =  G  ->  (Walks `  g )  =  (Walks `  G ) )
1110breqd 4664 . . . . . . 7  |-  ( g  =  G  ->  (
f (Walks `  g
) p  <->  f (Walks `  G ) p ) )
12113anbi1d 1403 . . . . . 6  |-  ( g  =  G  ->  (
( f (Walks `  g ) p  /\  ( p `  0
)  =  a  /\  ( p `  ( # `
 f ) )  =  b )  <->  ( f
(Walks `  G )
p  /\  ( p `  0 )  =  a  /\  ( p `
 ( # `  f
) )  =  b ) ) )
134, 7, 9, 9, 12bropfvvvv 7257 . . . . 5  |-  ( ( V  e.  _V  /\  V  e.  _V )  ->  ( F ( A (WalksOn `  G ) B ) P  -> 
( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) ) ) )
143, 3, 13mp2an 708 . . . 4  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( G  e. 
_V  /\  ( A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
15 3anass 1042 . . . . . 6  |-  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  <->  ( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V
) ) )
1615anbi1i 731 . . . . 5  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  <->  ( ( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V )
)  /\  ( F  e.  _V  /\  P  e. 
_V ) ) )
17 df-3an 1039 . . . . 5  |-  ( ( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  <->  ( ( G  e.  _V  /\  ( A  e.  V  /\  B  e.  V )
)  /\  ( F  e.  _V  /\  P  e. 
_V ) ) )
1816, 17bitr4i 267 . . . 4  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  <->  ( G  e. 
_V  /\  ( A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
1914, 18sylibr 224 . . 3  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V ) ) )
205anim1i 592 . . . . . 6  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
) )
211iswlkon 26553 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  -> 
( F ( A (WalksOn `  G ) B ) P  <->  ( F
(Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) ) )
2220, 21syl 17 . . . . 5  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( A (WalksOn `  G
) B ) P  <-> 
( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) ) )
2322biimpd 219 . . . 4  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  ->  ( F
( A (WalksOn `  G
) B ) P  ->  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) ) )
2423imdistani 726 . . 3  |-  ( ( ( ( G  e. 
_V  /\  A  e.  V  /\  B  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  /\  F ( A (WalksOn `  G ) B ) P )  ->  (
( ( G  e. 
_V  /\  A  e.  V  /\  B  e.  V
)  /\  ( F  e.  _V  /\  P  e. 
_V ) )  /\  ( F (Walks `  G
) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) ) )
2519, 24mpancom 703 . 2  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  ( F
(Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) ) )
26 df-3an 1039 . 2  |-  ( ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P `  0 )  =  A  /\  ( P `  ( # `  F
) )  =  B ) )  <->  ( (
( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )
)  /\  ( F
(Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) ) )
2725, 26sylibr 224 1  |-  ( F ( A (WalksOn `  G
) B ) P  ->  ( ( G  e.  _V  /\  A  e.  V  /\  B  e.  V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( F (Walks `  G ) P  /\  ( P ` 
0 )  =  A  /\  ( P `  ( # `  F ) )  =  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   class class class wbr 4653   {copab 4712   ` cfv 5888  (class class class)co 6650   0cc0 9936   #chash 13117  Vtxcvtx 25874  Walkscwlks 26492  WalksOncwlkson 26493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496
This theorem is referenced by:  wlkoniswlk  26557  wlksoneq1eq2  26560  wlkonl1iedg  26561  wlkon2n0  26562  spthonepeq  26648  uhgrwkspth  26651  usgr2wlkspth  26655
  Copyright terms: Public domain W3C validator