| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oemapso | Structured version Visualization version Unicode version | ||
| Description: The relation |
| Ref | Expression |
|---|---|
| cantnfs.s |
|
| cantnfs.a |
|
| cantnfs.b |
|
| oemapval.t |
|
| Ref | Expression |
|---|---|
| oemapso |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.b |
. . 3
| |
| 2 | eloni 5733 |
. . . . 5
| |
| 3 | ordwe 5736 |
. . . . 5
| |
| 4 | weso 5105 |
. . . . 5
| |
| 5 | 1, 2, 3, 4 | 4syl 19 |
. . . 4
|
| 6 | cnvso 5674 |
. . . 4
| |
| 7 | 5, 6 | sylib 208 |
. . 3
|
| 8 | cantnfs.a |
. . . 4
| |
| 9 | eloni 5733 |
. . . 4
| |
| 10 | ordwe 5736 |
. . . 4
| |
| 11 | weso 5105 |
. . . 4
| |
| 12 | 8, 9, 10, 11 | 4syl 19 |
. . 3
|
| 13 | oemapval.t |
. . . . 5
| |
| 14 | fvex 6201 |
. . . . . . . . 9
| |
| 15 | 14 | epelc 5031 |
. . . . . . . 8
|
| 16 | vex 3203 |
. . . . . . . . . . . 12
| |
| 17 | vex 3203 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | brcnv 5305 |
. . . . . . . . . . 11
|
| 19 | epel 5032 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | bitri 264 |
. . . . . . . . . 10
|
| 21 | 20 | imbi1i 339 |
. . . . . . . . 9
|
| 22 | 21 | ralbii 2980 |
. . . . . . . 8
|
| 23 | 15, 22 | anbi12i 733 |
. . . . . . 7
|
| 24 | 23 | rexbii 3041 |
. . . . . 6
|
| 25 | 24 | opabbii 4717 |
. . . . 5
|
| 26 | 13, 25 | eqtr4i 2647 |
. . . 4
|
| 27 | breq1 4656 |
. . . . 5
| |
| 28 | 27 | cbvrabv 3199 |
. . . 4
|
| 29 | 26, 28 | wemapso2 8458 |
. . 3
|
| 30 | 1, 7, 12, 29 | syl3anc 1326 |
. 2
|
| 31 | cantnfs.s |
. . . 4
| |
| 32 | eqid 2622 |
. . . . 5
| |
| 33 | 32, 8, 1 | cantnfdm 8561 |
. . . 4
|
| 34 | 31, 33 | syl5eq 2668 |
. . 3
|
| 35 | soeq2 5055 |
. . 3
| |
| 36 | 34, 35 | syl 17 |
. 2
|
| 37 | 30, 36 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seqom 7543 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-fin 7959 df-fsupp 8276 df-cnf 8559 |
| This theorem is referenced by: cantnf 8590 |
| Copyright terms: Public domain | W3C validator |