MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardonle Structured version   Visualization version   Unicode version

Theorem cardonle 8783
Description: The cardinal of an ordinal number is less than or equal to the ordinal number. Proposition 10.6(3) of [TakeutiZaring] p. 85. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
cardonle  |-  ( A  e.  On  ->  ( card `  A )  C_  A )

Proof of Theorem cardonle
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oncardval 8781 . 2  |-  ( A  e.  On  ->  ( card `  A )  = 
|^| { x  e.  On  |  x  ~~  A }
)
2 enrefg 7987 . . 3  |-  ( A  e.  On  ->  A  ~~  A )
3 breq1 4656 . . . 4  |-  ( x  =  A  ->  (
x  ~~  A  <->  A  ~~  A ) )
43intminss 4503 . . 3  |-  ( ( A  e.  On  /\  A  ~~  A )  ->  |^| { x  e.  On  |  x  ~~  A }  C_  A )
52, 4mpdan 702 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  x  ~~  A }  C_  A )
61, 5eqsstrd 3639 1  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   {crab 2916    C_ wss 3574   |^|cint 4475   class class class wbr 4653   Oncon0 5723   ` cfv 5888    ~~ cen 7952   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-en 7956  df-card 8765
This theorem is referenced by:  card0  8784  iscard  8801  iscard2  8802  carduni  8807  cardom  8812  alephinit  8918  cfle  9076  cfflb  9081  pwfseqlem5  9485
  Copyright terms: Public domain W3C validator