MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carduni Structured version   Visualization version   Unicode version

Theorem carduni 8807
Description: The union of a set of cardinals is a cardinal. Theorem 18.14 of [Monk1] p. 133. (Contributed by Mario Carneiro, 20-Jan-2013.)
Assertion
Ref Expression
carduni  |-  ( A  e.  V  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( card `  U. A )  = 
U. A ) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem carduni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  y  ->  ( card `  x )  =  ( card `  y
) )
2 id 22 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
31, 2eqeq12d 2637 . . . . . . . . 9  |-  ( x  =  y  ->  (
( card `  x )  =  x  <->  ( card `  y
)  =  y ) )
43rspcv 3305 . . . . . . . 8  |-  ( y  e.  A  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( card `  y )  =  y ) )
5 cardon 8770 . . . . . . . . 9  |-  ( card `  y )  e.  On
6 eleq1 2689 . . . . . . . . 9  |-  ( (
card `  y )  =  y  ->  ( (
card `  y )  e.  On  <->  y  e.  On ) )
75, 6mpbii 223 . . . . . . . 8  |-  ( (
card `  y )  =  y  ->  y  e.  On )
84, 7syl6com 37 . . . . . . 7  |-  ( A. x  e.  A  ( card `  x )  =  x  ->  ( y  e.  A  ->  y  e.  On ) )
98ssrdv 3609 . . . . . 6  |-  ( A. x  e.  A  ( card `  x )  =  x  ->  A  C_  On )
10 ssonuni 6986 . . . . . 6  |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )
119, 10syl5 34 . . . . 5  |-  ( A  e.  V  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  U. A  e.  On ) )
1211imp 445 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  U. A  e.  On )
13 cardonle 8783 . . . 4  |-  ( U. A  e.  On  ->  (
card `  U. A ) 
C_  U. A )
1412, 13syl 17 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  ( card `  U. A ) 
C_  U. A )
15 cardon 8770 . . . . 5  |-  ( card `  U. A )  e.  On
1615onirri 5834 . . . 4  |-  -.  ( card `  U. A )  e.  ( card `  U. A )
17 eluni 4439 . . . . . . . 8  |-  ( (
card `  U. A )  e.  U. A  <->  E. y
( ( card `  U. A )  e.  y  /\  y  e.  A
) )
18 elssuni 4467 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  A  ->  y  C_ 
U. A )
19 ssdomg 8001 . . . . . . . . . . . . . . . . . . 19  |-  ( U. A  e.  On  ->  ( y  C_  U. A  -> 
y  ~<_  U. A ) )
2019adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  C_  U. A  ->  y  ~<_  U. A
) )
2118, 20syl5 34 . . . . . . . . . . . . . . . . 17  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  e.  A  ->  y  ~<_  U. A
) )
22 id 22 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  y )  =  y  ->  ( card `  y )  =  y )
23 onenon 8775 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
card `  y )  e.  On  ->  ( card `  y )  e.  dom  card )
245, 23ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( card `  y )  e.  dom  card
2522, 24syl6eqelr 2710 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  y )  =  y  ->  y  e. 
dom  card )
26 onenon 8775 . . . . . . . . . . . . . . . . . 18  |-  ( U. A  e.  On  ->  U. A  e.  dom  card )
27 carddom2 8803 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  dom  card  /\ 
U. A  e.  dom  card )  ->  ( ( card `  y )  C_  ( card `  U. A )  <-> 
y  ~<_  U. A ) )
2825, 26, 27syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( ( card `  y )  C_  ( card `  U. A )  <-> 
y  ~<_  U. A ) )
2921, 28sylibrd 249 . . . . . . . . . . . . . . . 16  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  e.  A  ->  ( card `  y )  C_  ( card `  U. A ) ) )
30 sseq1 3626 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  y )  =  y  ->  ( (
card `  y )  C_  ( card `  U. A )  <->  y  C_  ( card `  U. A ) ) )
3130adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( ( card `  y )  C_  ( card `  U. A )  <-> 
y  C_  ( card ` 
U. A ) ) )
3229, 31sylibd 229 . . . . . . . . . . . . . . 15  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  e.  A  ->  y  C_  ( card `  U. A ) ) )
33 ssel 3597 . . . . . . . . . . . . . . 15  |-  ( y 
C_  ( card `  U. A )  ->  (
( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  ( card `  U. A ) ) )
3432, 33syl6 35 . . . . . . . . . . . . . 14  |-  ( ( ( card `  y
)  =  y  /\  U. A  e.  On )  ->  ( y  e.  A  ->  ( ( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  ( card `  U. A ) ) ) )
3534ex 450 . . . . . . . . . . . . 13  |-  ( (
card `  y )  =  y  ->  ( U. A  e.  On  ->  ( y  e.  A  -> 
( ( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  (
card `  U. A ) ) ) ) )
3635com3r 87 . . . . . . . . . . . 12  |-  ( y  e.  A  ->  (
( card `  y )  =  y  ->  ( U. A  e.  On  ->  ( ( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  (
card `  U. A ) ) ) ) )
374, 36syld 47 . . . . . . . . . . 11  |-  ( y  e.  A  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( U. A  e.  On  ->  ( ( card `  U. A )  e.  y  ->  ( card `  U. A )  e.  (
card `  U. A ) ) ) ) )
3837com4r 94 . . . . . . . . . 10  |-  ( (
card `  U. A )  e.  y  ->  (
y  e.  A  -> 
( A. x  e.  A  ( card `  x
)  =  x  -> 
( U. A  e.  On  ->  ( card ` 
U. A )  e.  ( card `  U. A ) ) ) ) )
3938imp 445 . . . . . . . . 9  |-  ( ( ( card `  U. A )  e.  y  /\  y  e.  A
)  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( U. A  e.  On  ->  (
card `  U. A )  e.  ( card `  U. A ) ) ) )
4039exlimiv 1858 . . . . . . . 8  |-  ( E. y ( ( card `  U. A )  e.  y  /\  y  e.  A )  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( U. A  e.  On  ->  (
card `  U. A )  e.  ( card `  U. A ) ) ) )
4117, 40sylbi 207 . . . . . . 7  |-  ( (
card `  U. A )  e.  U. A  -> 
( A. x  e.  A  ( card `  x
)  =  x  -> 
( U. A  e.  On  ->  ( card ` 
U. A )  e.  ( card `  U. A ) ) ) )
4241com13 88 . . . . . 6  |-  ( U. A  e.  On  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( (
card `  U. A )  e.  U. A  -> 
( card `  U. A )  e.  ( card `  U. A ) ) ) )
4342imp 445 . . . . 5  |-  ( ( U. A  e.  On  /\ 
A. x  e.  A  ( card `  x )  =  x )  ->  (
( card `  U. A )  e.  U. A  -> 
( card `  U. A )  e.  ( card `  U. A ) ) )
4412, 43sylancom 701 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  (
( card `  U. A )  e.  U. A  -> 
( card `  U. A )  e.  ( card `  U. A ) ) )
4516, 44mtoi 190 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  -.  ( card `  U. A )  e.  U. A )
4615onordi 5832 . . . 4  |-  Ord  ( card `  U. A )
47 eloni 5733 . . . . 5  |-  ( U. A  e.  On  ->  Ord  U. A )
4812, 47syl 17 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  Ord  U. A )
49 ordtri4 5761 . . . 4  |-  ( ( Ord  ( card `  U. A )  /\  Ord  U. A )  ->  (
( card `  U. A )  =  U. A  <->  ( ( card `  U. A ) 
C_  U. A  /\  -.  ( card `  U. A )  e.  U. A ) ) )
5046, 48, 49sylancr 695 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  (
( card `  U. A )  =  U. A  <->  ( ( card `  U. A ) 
C_  U. A  /\  -.  ( card `  U. A )  e.  U. A ) ) )
5114, 45, 50mpbir2and 957 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  (
card `  x )  =  x )  ->  ( card `  U. A )  =  U. A )
5251ex 450 1  |-  ( A  e.  V  ->  ( A. x  e.  A  ( card `  x )  =  x  ->  ( card `  U. A )  = 
U. A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912    C_ wss 3574   U.cuni 4436   class class class wbr 4653   dom cdm 5114   Ord word 5722   Oncon0 5723   ` cfv 5888    ~<_ cdom 7953   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by:  cardiun  8808  carduniima  8919
  Copyright terms: Public domain W3C validator