Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemblem Structured version   Visualization version   Unicode version

Theorem cdlemblem 35079
Description: Lemma for cdlemb 35080. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b  |-  B  =  ( Base `  K
)
cdlemb.l  |-  .<_  =  ( le `  K )
cdlemb.j  |-  .\/  =  ( join `  K )
cdlemb.u  |-  .1.  =  ( 1. `  K )
cdlemb.c  |-  C  =  (  <o  `  K )
cdlemb.a  |-  A  =  ( Atoms `  K )
cdlemblem.s  |-  .<  =  ( lt `  K )
cdlemblem.m  |-  ./\  =  ( meet `  K )
cdlemblem.v  |-  V  =  ( ( P  .\/  Q )  ./\  X )
Assertion
Ref Expression
cdlemblem  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )

Proof of Theorem cdlemblem
StepHypRef Expression
1 simp132 1197 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  -.  P  .<_  X )
2 simp111 1190 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  K  e.  HL )
3 simp2l 1087 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  u  e.  A )
4 simp12l 1174 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  X  e.  B )
52, 3, 43jca 1242 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( K  e.  HL  /\  u  e.  A  /\  X  e.  B )
)
6 simp2rr 1131 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  u  .<  X )
7 cdlemb.l . . . . . . 7  |-  .<_  =  ( le `  K )
8 cdlemblem.s . . . . . . 7  |-  .<  =  ( lt `  K )
97, 8pltle 16961 . . . . . 6  |-  ( ( K  e.  HL  /\  u  e.  A  /\  X  e.  B )  ->  ( u  .<  X  ->  u  .<_  X ) )
105, 6, 9sylc 65 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  u  .<_  X )
11 hllat 34650 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
122, 11syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  K  e.  Lat )
13 simp3l 1089 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
r  e.  A )
14 cdlemb.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
15 cdlemb.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
1614, 15atbase 34576 . . . . . . . 8  |-  ( r  e.  A  ->  r  e.  B )
1713, 16syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
r  e.  B )
1814, 15atbase 34576 . . . . . . . 8  |-  ( u  e.  A  ->  u  e.  B )
193, 18syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  u  e.  B )
20 cdlemb.j . . . . . . . 8  |-  .\/  =  ( join `  K )
2114, 7, 20latjle12 17062 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( r  e.  B  /\  u  e.  B  /\  X  e.  B
) )  ->  (
( r  .<_  X  /\  u  .<_  X )  <->  ( r  .\/  u )  .<_  X ) )
2212, 17, 19, 4, 21syl13anc 1328 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( ( r  .<_  X  /\  u  .<_  X )  <-> 
( r  .\/  u
)  .<_  X ) )
2322biimpd 219 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( ( r  .<_  X  /\  u  .<_  X )  ->  ( r  .\/  u )  .<_  X ) )
2410, 23mpan2d 710 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  .<_  X  -> 
( r  .\/  u
)  .<_  X ) )
25 simp112 1191 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  P  e.  A )
2613, 25, 33jca 1242 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  e.  A  /\  P  e.  A  /\  u  e.  A
) )
27 simp3r2 1170 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
r  =/=  u )
282, 26, 273jca 1242 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( K  e.  HL  /\  ( r  e.  A  /\  P  e.  A  /\  u  e.  A
)  /\  r  =/=  u ) )
29 simp3r3 1171 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
r  .<_  ( P  .\/  u ) )
307, 20, 15hlatexch2 34682 . . . . . 6  |-  ( ( K  e.  HL  /\  ( r  e.  A  /\  P  e.  A  /\  u  e.  A
)  /\  r  =/=  u )  ->  (
r  .<_  ( P  .\/  u )  ->  P  .<_  ( r  .\/  u
) ) )
3128, 29, 30sylc 65 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  P  .<_  ( r  .\/  u ) )
3214, 15atbase 34576 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
3325, 32syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  P  e.  B )
3414, 20latjcl 17051 . . . . . . 7  |-  ( ( K  e.  Lat  /\  r  e.  B  /\  u  e.  B )  ->  ( r  .\/  u
)  e.  B )
3512, 17, 19, 34syl3anc 1326 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  .\/  u
)  e.  B )
3614, 7lattr 17056 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  B  /\  ( r  .\/  u
)  e.  B  /\  X  e.  B )
)  ->  ( ( P  .<_  ( r  .\/  u )  /\  (
r  .\/  u )  .<_  X )  ->  P  .<_  X ) )
3712, 33, 35, 4, 36syl13anc 1328 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( ( P  .<_  ( r  .\/  u )  /\  ( r  .\/  u )  .<_  X )  ->  P  .<_  X ) )
3831, 37mpand 711 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( ( r  .\/  u )  .<_  X  ->  P  .<_  X ) )
3924, 38syld 47 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  .<_  X  ->  P  .<_  X ) )
401, 39mtod 189 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  -.  r  .<_  X )
41 simp2rl 1130 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  u  =/=  V )
42 simp113 1192 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  Q  e.  A )
43 simp3r1 1169 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
r  =/=  P )
447, 20, 15hlatexchb1 34679 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( r  e.  A  /\  Q  e.  A  /\  P  e.  A
)  /\  r  =/=  P )  ->  ( r  .<_  ( P  .\/  Q
)  <->  ( P  .\/  r )  =  ( P  .\/  Q ) ) )
452, 13, 42, 25, 43, 44syl131anc 1339 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  .<_  ( P 
.\/  Q )  <->  ( P  .\/  r )  =  ( P  .\/  Q ) ) )
4613, 3, 253jca 1242 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  e.  A  /\  u  e.  A  /\  P  e.  A
) )
472, 46, 433jca 1242 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( K  e.  HL  /\  ( r  e.  A  /\  u  e.  A  /\  P  e.  A
)  /\  r  =/=  P ) )
487, 20, 15hlatexch1 34681 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( r  e.  A  /\  u  e.  A  /\  P  e.  A
)  /\  r  =/=  P )  ->  ( r  .<_  ( P  .\/  u
)  ->  u  .<_  ( P  .\/  r ) ) )
4947, 29, 48sylc 65 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  u  .<_  ( P  .\/  r ) )
50 breq2 4657 . . . . . . . . 9  |-  ( ( P  .\/  r )  =  ( P  .\/  Q )  ->  ( u  .<_  ( P  .\/  r
)  <->  u  .<_  ( P 
.\/  Q ) ) )
5149, 50syl5ibcom 235 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( ( P  .\/  r )  =  ( P  .\/  Q )  ->  u  .<_  ( P 
.\/  Q ) ) )
5245, 51sylbid 230 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  .<_  ( P 
.\/  Q )  ->  u  .<_  ( P  .\/  Q ) ) )
5352, 10jctird 567 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  .<_  ( P 
.\/  Q )  -> 
( u  .<_  ( P 
.\/  Q )  /\  u  .<_  X ) ) )
5414, 15atbase 34576 . . . . . . . . . 10  |-  ( Q  e.  A  ->  Q  e.  B )
5542, 54syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  Q  e.  B )
5614, 20latjcl 17051 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
5712, 33, 55, 56syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( P  .\/  Q
)  e.  B )
58 cdlemblem.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
5914, 7, 58latlem12 17078 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( u  e.  B  /\  ( P  .\/  Q
)  e.  B  /\  X  e.  B )
)  ->  ( (
u  .<_  ( P  .\/  Q )  /\  u  .<_  X )  <->  u  .<_  ( ( P  .\/  Q ) 
./\  X ) ) )
6012, 19, 57, 4, 59syl13anc 1328 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( ( u  .<_  ( P  .\/  Q )  /\  u  .<_  X )  <-> 
u  .<_  ( ( P 
.\/  Q )  ./\  X ) ) )
61 cdlemblem.v . . . . . . . 8  |-  V  =  ( ( P  .\/  Q )  ./\  X )
6261breq2i 4661 . . . . . . 7  |-  ( u 
.<_  V  <->  u  .<_  ( ( P  .\/  Q ) 
./\  X ) )
6360, 62syl6bbr 278 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( ( u  .<_  ( P  .\/  Q )  /\  u  .<_  X )  <-> 
u  .<_  V ) )
6453, 63sylibd 229 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  .<_  ( P 
.\/  Q )  ->  u  .<_  V ) )
65 hlatl 34647 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  AtLat )
662, 65syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  K  e.  AtLat )
67 simp12r 1175 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  P  =/=  Q )
68 simp131 1196 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  X C  .1.  )
69 cdlemb.u . . . . . . . . 9  |-  .1.  =  ( 1. `  K )
70 cdlemb.c . . . . . . . . 9  |-  C  =  (  <o  `  K )
7114, 7, 20, 58, 69, 70, 151cvrat 34762 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  e.  A )
722, 25, 42, 4, 67, 68, 1, 71syl133anc 1349 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( ( P  .\/  Q )  ./\  X )  e.  A )
7361, 72syl5eqel 2705 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  V  e.  A )
747, 15atcmp 34598 . . . . . 6  |-  ( ( K  e.  AtLat  /\  u  e.  A  /\  V  e.  A )  ->  (
u  .<_  V  <->  u  =  V ) )
7566, 3, 73, 74syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( u  .<_  V  <->  u  =  V ) )
7664, 75sylibd 229 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( r  .<_  ( P 
.\/  Q )  ->  u  =  V )
)
7776necon3ad 2807 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( u  =/=  V  ->  -.  r  .<_  ( P 
.\/  Q ) ) )
7841, 77mpd 15 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  ->  -.  r  .<_  ( P 
.\/  Q ) )
7940, 78jca 554 1  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  V  /\  u  .<  X ) )  /\  ( r  e.  A  /\  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) ) )  -> 
( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   ltcplt 16941   joincjn 16944   meetcmee 16945   1.cp1 17038   Latclat 17045    <o ccvr 34549   Atomscatm 34550   AtLatcal 34551   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  cdlemb  35080
  Copyright terms: Public domain W3C validator