Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme5 Structured version   Visualization version   Unicode version

Theorem cdleme5 35527
Description: Part of proof of Lemma E in [Crawley] p. 113.  G represents fs(r). We show r  \/ fs(r)) = p  \/ q at the top of p. 114. (Contributed by NM, 7-Jun-2012.)
Hypotheses
Ref Expression
cdleme4.l  |-  .<_  =  ( le `  K )
cdleme4.j  |-  .\/  =  ( join `  K )
cdleme4.m  |-  ./\  =  ( meet `  K )
cdleme4.a  |-  A  =  ( Atoms `  K )
cdleme4.h  |-  H  =  ( LHyp `  K
)
cdleme4.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme4.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme4.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  G
)  =  ( P 
.\/  Q ) )

Proof of Theorem cdleme5
StepHypRef Expression
1 cdleme4.g . . 3  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) )
21oveq2i 6661 . 2  |-  ( R 
.\/  G )  =  ( R  .\/  (
( P  .\/  Q
)  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) ) )
3 simp1l 1085 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
4 simp23l 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
5 simp21 1094 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  P  e.  A )
6 simp22 1095 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  Q  e.  A )
7 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
8 cdleme4.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdleme4.a . . . . . 6  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 34653 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
113, 5, 6, 10syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
12 hllat 34650 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
133, 12syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
14 simp1 1061 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
15 simp3ll 1132 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  A )
16 cdleme4.l . . . . . . 7  |-  .<_  =  ( le `  K )
17 cdleme4.m . . . . . . 7  |-  ./\  =  ( meet `  K )
18 cdleme4.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
19 cdleme4.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
20 cdleme4.f . . . . . . 7  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
2116, 8, 17, 9, 18, 19, 20, 7cdleme1b 35513 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  ( Base `  K ) )
2214, 5, 6, 15, 21syl13anc 1328 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  F  e.  ( Base `  K ) )
237, 8, 9hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
243, 4, 15, 23syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  S
)  e.  ( Base `  K ) )
25 simp1r 1086 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
267, 18lhpbase 35284 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2725, 26syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  ( Base `  K ) )
287, 17latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  e.  ( Base `  K ) )
2913, 24, 27, 28syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( R  .\/  S )  ./\  W )  e.  ( Base `  K
) )
307, 8latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  (
( R  .\/  S
)  ./\  W )  e.  ( Base `  K
) )  ->  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)
3113, 22, 29, 30syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( F  .\/  (
( R  .\/  S
)  ./\  W )
)  e.  ( Base `  K ) )
32 simp3r 1090 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q ) )
337, 16, 8, 17, 9atmod3i1 35150 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( P  .\/  Q
)  e.  ( Base `  K )  /\  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)  /\  R  .<_  ( P  .\/  Q ) )  ->  ( R  .\/  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) ) )  =  ( ( P  .\/  Q )  ./\  ( R  .\/  ( F  .\/  (
( R  .\/  S
)  ./\  W )
) ) ) )
343, 4, 11, 31, 32, 33syl131anc 1339 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  (
( P  .\/  Q
)  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) ) )  =  ( ( P  .\/  Q )  ./\  ( R  .\/  ( F  .\/  (
( R  .\/  S
)  ./\  W )
) ) ) )
357, 9atbase 34576 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
3615, 35syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  ( Base `  K ) )
377, 16, 8latlej2 17061 . . . . . 6  |-  ( ( K  e.  Lat  /\  S  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  .<_  ( S  .\/  ( P 
.\/  Q ) ) )
3813, 36, 11, 37syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  .\/  Q
)  .<_  ( S  .\/  ( P  .\/  Q ) ) )
397, 9atbase 34576 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
404, 39syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  ( Base `  K ) )
417, 8latj12 17096 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  F  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) ) )  -> 
( R  .\/  ( F  .\/  S ) )  =  ( F  .\/  ( R  .\/  S ) ) )
4213, 40, 22, 36, 41syl13anc 1328 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  ( F  .\/  S ) )  =  ( F  .\/  ( R  .\/  S ) ) )
4316, 8, 17, 9, 18, 19, 7cdleme0aa 35497 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  ( Base `  K )
)
4414, 5, 6, 43syl3anc 1326 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  U  e.  ( Base `  K ) )
457, 8latj12 17096 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) ) )  -> 
( S  .\/  ( R  .\/  U ) )  =  ( R  .\/  ( S  .\/  U ) ) )
4613, 36, 40, 44, 45syl13anc 1328 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  ( R  .\/  U ) )  =  ( R  .\/  ( S  .\/  U ) ) )
4716, 8, 17, 9, 18, 19cdleme4 35525 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P 
.\/  Q ) )  ->  ( P  .\/  Q )  =  ( R 
.\/  U ) )
48473adant3l 1322 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  .\/  Q
)  =  ( R 
.\/  U ) )
4948oveq2d 6666 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  ( P  .\/  Q ) )  =  ( S  .\/  ( R  .\/  U ) ) )
507, 8latjcom 17059 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  S  e.  ( Base `  K
) )  ->  ( F  .\/  S )  =  ( S  .\/  F
) )
5113, 22, 36, 50syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( F  .\/  S
)  =  ( S 
.\/  F ) )
52 simp3l 1089 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  e.  A  /\  -.  S  .<_  W ) )
5316, 8, 17, 9, 18, 19, 20cdleme1 35514 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( S  .\/  F )  =  ( S  .\/  U ) )
5414, 5, 6, 52, 53syl13anc 1328 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  F
)  =  ( S 
.\/  U ) )
5551, 54eqtrd 2656 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( F  .\/  S
)  =  ( S 
.\/  U ) )
5655oveq2d 6666 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  ( F  .\/  S ) )  =  ( R  .\/  ( S  .\/  U ) ) )
5746, 49, 563eqtr4d 2666 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  ( P  .\/  Q ) )  =  ( R  .\/  ( F  .\/  S ) ) )
5816, 8, 9hlatlej1 34661 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  R  .<_  ( R  .\/  S ) )
593, 4, 15, 58syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( R  .\/  S ) )
607, 16, 8, 17, 9atmod3i1 35150 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( R  .\/  S
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  R  .<_  ( R  .\/  S
) )  ->  ( R  .\/  ( ( R 
.\/  S )  ./\  W ) )  =  ( ( R  .\/  S
)  ./\  ( R  .\/  W ) ) )
613, 4, 24, 27, 59, 60syl131anc 1339 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  (
( R  .\/  S
)  ./\  W )
)  =  ( ( R  .\/  S ) 
./\  ( R  .\/  W ) ) )
62 simp23r 1183 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  R  .<_  W )
63 eqid 2622 . . . . . . . . . . . . 13  |-  ( 1.
`  K )  =  ( 1. `  K
)
6416, 8, 63, 9, 18lhpjat2 35307 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  .\/  W
)  =  ( 1.
`  K ) )
6514, 4, 62, 64syl12anc 1324 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  W
)  =  ( 1.
`  K ) )
6665oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( R  .\/  S )  ./\  ( R  .\/  W ) )  =  ( ( R  .\/  S )  ./\  ( 1. `  K ) ) )
67 hlol 34648 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  OL )
683, 67syl 17 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  OL )
697, 17, 63olm11 34514 . . . . . . . . . . 11  |-  ( ( K  e.  OL  /\  ( R  .\/  S )  e.  ( Base `  K
) )  ->  (
( R  .\/  S
)  ./\  ( 1. `  K ) )  =  ( R  .\/  S
) )
7068, 24, 69syl2anc 693 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( R  .\/  S )  ./\  ( 1. `  K ) )  =  ( R  .\/  S
) )
7166, 70eqtrd 2656 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( R  .\/  S )  ./\  ( R  .\/  W ) )  =  ( R  .\/  S
) )
7261, 71eqtrd 2656 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  (
( R  .\/  S
)  ./\  W )
)  =  ( R 
.\/  S ) )
7372oveq2d 6666 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( F  .\/  ( R  .\/  ( ( R 
.\/  S )  ./\  W ) ) )  =  ( F  .\/  ( R  .\/  S ) ) )
7442, 57, 733eqtr4d 2666 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  ( P  .\/  Q ) )  =  ( F  .\/  ( R  .\/  ( ( R  .\/  S ) 
./\  W ) ) ) )
757, 8latj12 17096 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( F  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  (
( R  .\/  S
)  ./\  W )  e.  ( Base `  K
) ) )  -> 
( F  .\/  ( R  .\/  ( ( R 
.\/  S )  ./\  W ) ) )  =  ( R  .\/  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) ) ) )
7613, 22, 40, 29, 75syl13anc 1328 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( F  .\/  ( R  .\/  ( ( R 
.\/  S )  ./\  W ) ) )  =  ( R  .\/  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) ) ) )
7774, 76eqtrd 2656 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  ( P  .\/  Q ) )  =  ( R  .\/  ( F  .\/  ( ( R  .\/  S ) 
./\  W ) ) ) )
7838, 77breqtrd 4679 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  .\/  Q
)  .<_  ( R  .\/  ( F  .\/  ( ( R  .\/  S ) 
./\  W ) ) ) )
797, 8latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) )  e.  (
Base `  K )
)  ->  ( R  .\/  ( F  .\/  (
( R  .\/  S
)  ./\  W )
) )  e.  (
Base `  K )
)
8013, 40, 31, 79syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  ( F  .\/  ( ( R 
.\/  S )  ./\  W ) ) )  e.  ( Base `  K
) )
817, 16, 17latleeqm1 17079 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( R  .\/  ( F  .\/  (
( R  .\/  S
)  ./\  W )
) )  e.  (
Base `  K )
)  ->  ( ( P  .\/  Q )  .<_  ( R  .\/  ( F 
.\/  ( ( R 
.\/  S )  ./\  W ) ) )  <->  ( ( P  .\/  Q )  ./\  ( R  .\/  ( F 
.\/  ( ( R 
.\/  S )  ./\  W ) ) ) )  =  ( P  .\/  Q ) ) )
8213, 11, 80, 81syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( P  .\/  Q )  .<_  ( R  .\/  ( F  .\/  (
( R  .\/  S
)  ./\  W )
) )  <->  ( ( P  .\/  Q )  ./\  ( R  .\/  ( F 
.\/  ( ( R 
.\/  S )  ./\  W ) ) ) )  =  ( P  .\/  Q ) ) )
8378, 82mpbid 222 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( P  .\/  Q )  ./\  ( R  .\/  ( F  .\/  (
( R  .\/  S
)  ./\  W )
) ) )  =  ( P  .\/  Q
) )
8434, 83eqtrd 2656 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  (
( P  .\/  Q
)  ./\  ( F  .\/  ( ( R  .\/  S )  ./\  W )
) ) )  =  ( P  .\/  Q
) )
852, 84syl5eq 2668 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  G
)  =  ( P 
.\/  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   1.cp1 17038   Latclat 17045   OLcol 34461   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274
This theorem is referenced by:  cdleme6  35528  cdleme7e  35534  cdleme18b  35579  cdleme50trn2a  35838
  Copyright terms: Public domain W3C validator