| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme5 | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma E
in [Crawley] p. 113. |
| Ref | Expression |
|---|---|
| cdleme4.l |
|
| cdleme4.j |
|
| cdleme4.m |
|
| cdleme4.a |
|
| cdleme4.h |
|
| cdleme4.u |
|
| cdleme4.f |
|
| cdleme4.g |
|
| Ref | Expression |
|---|---|
| cdleme5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme4.g |
. . 3
| |
| 2 | 1 | oveq2i 6661 |
. 2
|
| 3 | simp1l 1085 |
. . . 4
| |
| 4 | simp23l 1182 |
. . . 4
| |
| 5 | simp21 1094 |
. . . . 5
| |
| 6 | simp22 1095 |
. . . . 5
| |
| 7 | eqid 2622 |
. . . . . 6
| |
| 8 | cdleme4.j |
. . . . . 6
| |
| 9 | cdleme4.a |
. . . . . 6
| |
| 10 | 7, 8, 9 | hlatjcl 34653 |
. . . . 5
|
| 11 | 3, 5, 6, 10 | syl3anc 1326 |
. . . 4
|
| 12 | hllat 34650 |
. . . . . 6
| |
| 13 | 3, 12 | syl 17 |
. . . . 5
|
| 14 | simp1 1061 |
. . . . . 6
| |
| 15 | simp3ll 1132 |
. . . . . 6
| |
| 16 | cdleme4.l |
. . . . . . 7
| |
| 17 | cdleme4.m |
. . . . . . 7
| |
| 18 | cdleme4.h |
. . . . . . 7
| |
| 19 | cdleme4.u |
. . . . . . 7
| |
| 20 | cdleme4.f |
. . . . . . 7
| |
| 21 | 16, 8, 17, 9, 18, 19, 20, 7 | cdleme1b 35513 |
. . . . . 6
|
| 22 | 14, 5, 6, 15, 21 | syl13anc 1328 |
. . . . 5
|
| 23 | 7, 8, 9 | hlatjcl 34653 |
. . . . . . 7
|
| 24 | 3, 4, 15, 23 | syl3anc 1326 |
. . . . . 6
|
| 25 | simp1r 1086 |
. . . . . . 7
| |
| 26 | 7, 18 | lhpbase 35284 |
. . . . . . 7
|
| 27 | 25, 26 | syl 17 |
. . . . . 6
|
| 28 | 7, 17 | latmcl 17052 |
. . . . . 6
|
| 29 | 13, 24, 27, 28 | syl3anc 1326 |
. . . . 5
|
| 30 | 7, 8 | latjcl 17051 |
. . . . 5
|
| 31 | 13, 22, 29, 30 | syl3anc 1326 |
. . . 4
|
| 32 | simp3r 1090 |
. . . 4
| |
| 33 | 7, 16, 8, 17, 9 | atmod3i1 35150 |
. . . 4
|
| 34 | 3, 4, 11, 31, 32, 33 | syl131anc 1339 |
. . 3
|
| 35 | 7, 9 | atbase 34576 |
. . . . . . 7
|
| 36 | 15, 35 | syl 17 |
. . . . . 6
|
| 37 | 7, 16, 8 | latlej2 17061 |
. . . . . 6
|
| 38 | 13, 36, 11, 37 | syl3anc 1326 |
. . . . 5
|
| 39 | 7, 9 | atbase 34576 |
. . . . . . . . 9
|
| 40 | 4, 39 | syl 17 |
. . . . . . . 8
|
| 41 | 7, 8 | latj12 17096 |
. . . . . . . 8
|
| 42 | 13, 40, 22, 36, 41 | syl13anc 1328 |
. . . . . . 7
|
| 43 | 16, 8, 17, 9, 18, 19, 7 | cdleme0aa 35497 |
. . . . . . . . . 10
|
| 44 | 14, 5, 6, 43 | syl3anc 1326 |
. . . . . . . . 9
|
| 45 | 7, 8 | latj12 17096 |
. . . . . . . . 9
|
| 46 | 13, 36, 40, 44, 45 | syl13anc 1328 |
. . . . . . . 8
|
| 47 | 16, 8, 17, 9, 18, 19 | cdleme4 35525 |
. . . . . . . . . 10
|
| 48 | 47 | 3adant3l 1322 |
. . . . . . . . 9
|
| 49 | 48 | oveq2d 6666 |
. . . . . . . 8
|
| 50 | 7, 8 | latjcom 17059 |
. . . . . . . . . . 11
|
| 51 | 13, 22, 36, 50 | syl3anc 1326 |
. . . . . . . . . 10
|
| 52 | simp3l 1089 |
. . . . . . . . . . 11
| |
| 53 | 16, 8, 17, 9, 18, 19, 20 | cdleme1 35514 |
. . . . . . . . . . 11
|
| 54 | 14, 5, 6, 52, 53 | syl13anc 1328 |
. . . . . . . . . 10
|
| 55 | 51, 54 | eqtrd 2656 |
. . . . . . . . 9
|
| 56 | 55 | oveq2d 6666 |
. . . . . . . 8
|
| 57 | 46, 49, 56 | 3eqtr4d 2666 |
. . . . . . 7
|
| 58 | 16, 8, 9 | hlatlej1 34661 |
. . . . . . . . . . 11
|
| 59 | 3, 4, 15, 58 | syl3anc 1326 |
. . . . . . . . . 10
|
| 60 | 7, 16, 8, 17, 9 | atmod3i1 35150 |
. . . . . . . . . 10
|
| 61 | 3, 4, 24, 27, 59, 60 | syl131anc 1339 |
. . . . . . . . 9
|
| 62 | simp23r 1183 |
. . . . . . . . . . . 12
| |
| 63 | eqid 2622 |
. . . . . . . . . . . . 13
| |
| 64 | 16, 8, 63, 9, 18 | lhpjat2 35307 |
. . . . . . . . . . . 12
|
| 65 | 14, 4, 62, 64 | syl12anc 1324 |
. . . . . . . . . . 11
|
| 66 | 65 | oveq2d 6666 |
. . . . . . . . . 10
|
| 67 | hlol 34648 |
. . . . . . . . . . . 12
| |
| 68 | 3, 67 | syl 17 |
. . . . . . . . . . 11
|
| 69 | 7, 17, 63 | olm11 34514 |
. . . . . . . . . . 11
|
| 70 | 68, 24, 69 | syl2anc 693 |
. . . . . . . . . 10
|
| 71 | 66, 70 | eqtrd 2656 |
. . . . . . . . 9
|
| 72 | 61, 71 | eqtrd 2656 |
. . . . . . . 8
|
| 73 | 72 | oveq2d 6666 |
. . . . . . 7
|
| 74 | 42, 57, 73 | 3eqtr4d 2666 |
. . . . . 6
|
| 75 | 7, 8 | latj12 17096 |
. . . . . . 7
|
| 76 | 13, 22, 40, 29, 75 | syl13anc 1328 |
. . . . . 6
|
| 77 | 74, 76 | eqtrd 2656 |
. . . . 5
|
| 78 | 38, 77 | breqtrd 4679 |
. . . 4
|
| 79 | 7, 8 | latjcl 17051 |
. . . . . 6
|
| 80 | 13, 40, 31, 79 | syl3anc 1326 |
. . . . 5
|
| 81 | 7, 16, 17 | latleeqm1 17079 |
. . . . 5
|
| 82 | 13, 11, 80, 81 | syl3anc 1326 |
. . . 4
|
| 83 | 78, 82 | mpbid 222 |
. . 3
|
| 84 | 34, 83 | eqtrd 2656 |
. 2
|
| 85 | 2, 84 | syl5eq 2668 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 |
| This theorem is referenced by: cdleme6 35528 cdleme7e 35534 cdleme18b 35579 cdleme50trn2a 35838 |
| Copyright terms: Public domain | W3C validator |