| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme22b | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma E
in [Crawley] p. 113, 3rd paragraph, 5th line
on
p. 115. Show that t |
| Ref | Expression |
|---|---|
| cdleme22.l |
|
| cdleme22.j |
|
| cdleme22.m |
|
| cdleme22.a |
|
| cdleme22.h |
|
| Ref | Expression |
|---|---|
| cdleme22b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1085 |
. . . . 5
| |
| 2 | simp1r1 1157 |
. . . . . 6
| |
| 3 | simp1r2 1158 |
. . . . . 6
| |
| 4 | simp1r3 1159 |
. . . . . 6
| |
| 5 | cdleme22.j |
. . . . . . 7
| |
| 6 | cdleme22.a |
. . . . . . 7
| |
| 7 | eqid 2622 |
. . . . . . 7
| |
| 8 | 5, 6, 7 | llni2 34798 |
. . . . . 6
|
| 9 | 1, 2, 3, 4, 8 | syl31anc 1329 |
. . . . 5
|
| 10 | 6, 7 | llnneat 34800 |
. . . . 5
|
| 11 | 1, 9, 10 | syl2anc 693 |
. . . 4
|
| 12 | eqid 2622 |
. . . . . 6
| |
| 13 | 12, 7 | llnn0 34802 |
. . . . 5
|
| 14 | 1, 9, 13 | syl2anc 693 |
. . . 4
|
| 15 | 11, 14 | jca 554 |
. . 3
|
| 16 | df-ne 2795 |
. . . . 5
| |
| 17 | 16 | anbi2i 730 |
. . . 4
|
| 18 | pm4.56 516 |
. . . 4
| |
| 19 | 17, 18 | bitri 264 |
. . 3
|
| 20 | 15, 19 | sylib 208 |
. 2
|
| 21 | simp3r2 1170 |
. . . . . . 7
| |
| 22 | simp3l 1089 |
. . . . . . . 8
| |
| 23 | cdleme22.l |
. . . . . . . . 9
| |
| 24 | 23, 5, 6 | hlatlej1 34661 |
. . . . . . . 8
|
| 25 | 1, 3, 22, 24 | syl3anc 1326 |
. . . . . . 7
|
| 26 | hllat 34650 |
. . . . . . . . 9
| |
| 27 | 1, 26 | syl 17 |
. . . . . . . 8
|
| 28 | eqid 2622 |
. . . . . . . . . 10
| |
| 29 | 28, 6 | atbase 34576 |
. . . . . . . . 9
|
| 30 | 2, 29 | syl 17 |
. . . . . . . 8
|
| 31 | 28, 6 | atbase 34576 |
. . . . . . . . 9
|
| 32 | 3, 31 | syl 17 |
. . . . . . . 8
|
| 33 | 28, 5, 6 | hlatjcl 34653 |
. . . . . . . . 9
|
| 34 | 1, 3, 22, 33 | syl3anc 1326 |
. . . . . . . 8
|
| 35 | 28, 23, 5 | latjle12 17062 |
. . . . . . . 8
|
| 36 | 27, 30, 32, 34, 35 | syl13anc 1328 |
. . . . . . 7
|
| 37 | 21, 25, 36 | mpbi2and 956 |
. . . . . 6
|
| 38 | 37 | adantr 481 |
. . . . 5
|
| 39 | simp3r3 1171 |
. . . . . . 7
| |
| 40 | 39 | adantr 481 |
. . . . . 6
|
| 41 | simpr 477 |
. . . . . 6
| |
| 42 | simp21 1094 |
. . . . . . . . 9
| |
| 43 | simp22 1095 |
. . . . . . . . 9
| |
| 44 | 28, 5, 6 | hlatjcl 34653 |
. . . . . . . . 9
|
| 45 | 1, 42, 43, 44 | syl3anc 1326 |
. . . . . . . 8
|
| 46 | 28, 23, 5 | latjle12 17062 |
. . . . . . . 8
|
| 47 | 27, 30, 32, 45, 46 | syl13anc 1328 |
. . . . . . 7
|
| 48 | 47 | adantr 481 |
. . . . . 6
|
| 49 | 40, 41, 48 | mpbi2and 956 |
. . . . 5
|
| 50 | 28, 5, 6 | hlatjcl 34653 |
. . . . . . . 8
|
| 51 | 1, 2, 3, 50 | syl3anc 1326 |
. . . . . . 7
|
| 52 | cdleme22.m |
. . . . . . . 8
| |
| 53 | 28, 23, 52 | latlem12 17078 |
. . . . . . 7
|
| 54 | 27, 51, 34, 45, 53 | syl13anc 1328 |
. . . . . 6
|
| 55 | 54 | adantr 481 |
. . . . 5
|
| 56 | 38, 49, 55 | mpbi2and 956 |
. . . 4
|
| 57 | 56 | ex 450 |
. . 3
|
| 58 | hlop 34649 |
. . . . . . . 8
| |
| 59 | 1, 58 | syl 17 |
. . . . . . 7
|
| 60 | 59 | adantr 481 |
. . . . . 6
|
| 61 | 51 | adantr 481 |
. . . . . 6
|
| 62 | simprl 794 |
. . . . . 6
| |
| 63 | simprr 796 |
. . . . . 6
| |
| 64 | 28, 23, 12, 6 | leat3 34582 |
. . . . . 6
|
| 65 | 60, 61, 62, 63, 64 | syl31anc 1329 |
. . . . 5
|
| 66 | 65 | exp32 631 |
. . . 4
|
| 67 | breq2 4657 |
. . . . . . . . 9
| |
| 68 | 67 | biimpa 501 |
. . . . . . . 8
|
| 69 | 28, 23, 12 | ople0 34474 |
. . . . . . . . 9
|
| 70 | 59, 51, 69 | syl2anc 693 |
. . . . . . . 8
|
| 71 | 68, 70 | syl5ib 234 |
. . . . . . 7
|
| 72 | 71 | imp 445 |
. . . . . 6
|
| 73 | 72 | olcd 408 |
. . . . 5
|
| 74 | 73 | exp32 631 |
. . . 4
|
| 75 | simp3r1 1169 |
. . . . 5
| |
| 76 | 5, 52, 12, 6 | 2atmat0 34812 |
. . . . 5
|
| 77 | 1, 3, 22, 42, 43, 75, 76 | syl33anc 1341 |
. . . 4
|
| 78 | 66, 74, 77 | mpjaod 396 |
. . 3
|
| 79 | 57, 78 | syld 47 |
. 2
|
| 80 | 20, 79 | mtod 189 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 |
| This theorem is referenced by: cdleme22cN 35630 cdleme27a 35655 |
| Copyright terms: Public domain | W3C validator |