| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme22f2 | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma E
in [Crawley] p. 113. cdleme22f 35634 with s and t
swapped (this case is not mentioned by them). If s |
| Ref | Expression |
|---|---|
| cdleme22.l |
|
| cdleme22.j |
|
| cdleme22.m |
|
| cdleme22.a |
|
| cdleme22.h |
|
| cdleme22f2.u |
|
| cdleme22f2.f |
|
| cdleme22f2.n |
|
| Ref | Expression |
|---|---|
| cdleme22f2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp11 1091 |
. . . 4
| |
| 2 | simp2l 1087 |
. . . 4
| |
| 3 | simp2r 1088 |
. . . 4
| |
| 4 | 1, 2, 3 | 3jca 1242 |
. . 3
|
| 5 | simp12 1092 |
. . 3
| |
| 6 | simp31l 1184 |
. . 3
| |
| 7 | simp33 1099 |
. . 3
| |
| 8 | simp32l 1186 |
. . . 4
| |
| 9 | 8 | necomd 2849 |
. . 3
|
| 10 | simp32r 1187 |
. . . 4
| |
| 11 | simp11l 1172 |
. . . . . 6
| |
| 12 | hlcvl 34646 |
. . . . . 6
| |
| 13 | 11, 12 | syl 17 |
. . . . 5
|
| 14 | simp12l 1174 |
. . . . 5
| |
| 15 | simp33l 1188 |
. . . . 5
| |
| 16 | simp33r 1189 |
. . . . . 6
| |
| 17 | simp31r 1185 |
. . . . . 6
| |
| 18 | nbrne2 4673 |
. . . . . . 7
| |
| 19 | 18 | necomd 2849 |
. . . . . 6
|
| 20 | 16, 17, 19 | syl2anc 693 |
. . . . 5
|
| 21 | cdleme22.l |
. . . . . 6
| |
| 22 | cdleme22.j |
. . . . . 6
| |
| 23 | cdleme22.a |
. . . . . 6
| |
| 24 | 21, 22, 23 | cvlatexch2 34624 |
. . . . 5
|
| 25 | 13, 6, 14, 15, 20, 24 | syl131anc 1339 |
. . . 4
|
| 26 | 10, 25 | mpd 15 |
. . 3
|
| 27 | cdleme22.m |
. . . 4
| |
| 28 | cdleme22.h |
. . . 4
| |
| 29 | cdleme22f2.u |
. . . 4
| |
| 30 | cdleme22f2.f |
. . . 4
| |
| 31 | cdleme22f2.n |
. . . 4
| |
| 32 | 21, 22, 27, 23, 28, 29, 30, 31 | cdleme22f 35634 |
. . 3
|
| 33 | 4, 5, 6, 7, 9, 26, 32 | syl132anc 1344 |
. 2
|
| 34 | simp31 1097 |
. . . 4
| |
| 35 | simp133 1198 |
. . . 4
| |
| 36 | simp132 1197 |
. . . 4
| |
| 37 | simp131 1196 |
. . . 4
| |
| 38 | 21, 22, 27, 23, 28, 29, 30, 31 | cdleme7ga 35535 |
. . . 4
|
| 39 | 4, 5, 34, 35, 36, 37, 38 | syl123anc 1343 |
. . 3
|
| 40 | 21, 22, 27, 23, 28, 29, 30 | cdleme3fa 35523 |
. . . 4
|
| 41 | 1, 2, 3, 34, 35, 37, 40 | syl132anc 1344 |
. . 3
|
| 42 | 21, 22, 27, 23, 28, 29, 30, 31 | cdleme7 35536 |
. . . . 5
|
| 43 | 4, 5, 34, 35, 36, 37, 42 | syl123anc 1343 |
. . . 4
|
| 44 | nbrne2 4673 |
. . . . 5
| |
| 45 | 44 | necomd 2849 |
. . . 4
|
| 46 | 16, 43, 45 | syl2anc 693 |
. . 3
|
| 47 | 21, 22, 23 | cvlatexch2 34624 |
. . 3
|
| 48 | 13, 39, 41, 15, 46, 47 | syl131anc 1339 |
. 2
|
| 49 | 33, 48 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 |
| This theorem is referenced by: cdleme26f2ALTN 35652 cdleme26f2 35653 |
| Copyright terms: Public domain | W3C validator |