Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr3 Structured version   Visualization version   Unicode version

Theorem cdlemftr3 35853
Description: Special case of cdlemf 35851 showing existence of non-identity translation with trace different from any 3 given lattice elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b  |-  B  =  ( Base `  K
)
cdlemftr.h  |-  H  =  ( LHyp `  K
)
cdlemftr.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemftr.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemftr3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( ( R `  f )  =/=  X  /\  ( R `  f
)  =/=  Y  /\  ( R `  f )  =/=  Z ) ) )
Distinct variable groups:    f, X    f, Y    f, Z    f, H    f, K    R, f    T, f    f, W
Allowed substitution hint:    B( f)

Proof of Theorem cdlemftr3
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
2 eqid 2622 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
3 cdlemftr.h . . . . 5  |-  H  =  ( LHyp `  K
)
41, 2, 3lhpexle3 35298 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. u  e.  (
Atoms `  K ) ( u ( le `  K ) W  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/=  Z
) ) )
5 df-rex 2918 . . . 4  |-  ( E. u  e.  ( Atoms `  K ) ( u ( le `  K
) W  /\  (
u  =/=  X  /\  u  =/=  Y  /\  u  =/=  Z ) )  <->  E. u
( u  e.  (
Atoms `  K )  /\  ( u ( le
`  K ) W  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) ) ) )
64, 5sylib 208 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. u ( u  e.  ( Atoms `  K
)  /\  ( u
( le `  K
) W  /\  (
u  =/=  X  /\  u  =/=  Y  /\  u  =/=  Z ) ) ) )
7 cdlemftr.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
8 cdlemftr.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemftr.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
107, 1, 2, 3, 8, 9cdlemfnid 35852 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  ( Atoms `  K )  /\  u ( le `  K ) W ) )  ->  E. f  e.  T  ( ( R `  f )  =  u  /\  f  =/=  (  _I  |`  B ) ) )
1110adantrrr 761 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  ( Atoms `  K )  /\  ( u ( le
`  K ) W  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) ) ) )  ->  E. f  e.  T  ( ( R `  f )  =  u  /\  f  =/=  (  _I  |`  B ) ) )
12 eqcom 2629 . . . . . . . . 9  |-  ( ( R `  f )  =  u  <->  u  =  ( R `  f ) )
1312anbi1i 731 . . . . . . . 8  |-  ( ( ( R `  f
)  =  u  /\  f  =/=  (  _I  |`  B ) )  <->  ( u  =  ( R `  f
)  /\  f  =/=  (  _I  |`  B ) ) )
1413rexbii 3041 . . . . . . 7  |-  ( E. f  e.  T  ( ( R `  f
)  =  u  /\  f  =/=  (  _I  |`  B ) )  <->  E. f  e.  T  ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) ) )
1511, 14sylib 208 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  ( Atoms `  K )  /\  ( u ( le
`  K ) W  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) ) ) )  ->  E. f  e.  T  ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) ) )
16 simprrr 805 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  ( Atoms `  K )  /\  ( u ( le
`  K ) W  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) ) ) )  ->  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) )
1715, 16jca 554 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( u  e.  ( Atoms `  K )  /\  ( u ( le
`  K ) W  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) ) ) )  ->  ( E. f  e.  T  ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) ) )
1817ex 450 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( u  e.  ( Atoms `  K )  /\  ( u ( le
`  K ) W  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) ) )  -> 
( E. f  e.  T  ( u  =  ( R `  f
)  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) ) ) )
1918eximdv 1846 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( E. u ( u  e.  ( Atoms `  K )  /\  (
u ( le `  K ) W  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/=  Z
) ) )  ->  E. u ( E. f  e.  T  ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) ) ) )
206, 19mpd 15 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. u ( E. f  e.  T  ( u  =  ( R `
 f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) ) )
21 rexcom4 3225 . . 3  |-  ( E. f  e.  T  E. u ( ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) )  <->  E. u E. f  e.  T  ( ( u  =  ( R `  f
)  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) ) )
22 anass 681 . . . . . 6  |-  ( ( ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) )  <->  ( u  =  ( R `  f )  /\  (
f  =/=  (  _I  |`  B )  /\  (
u  =/=  X  /\  u  =/=  Y  /\  u  =/=  Z ) ) ) )
2322exbii 1774 . . . . 5  |-  ( E. u ( ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) )  <->  E. u
( u  =  ( R `  f )  /\  ( f  =/=  (  _I  |`  B )  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) ) ) )
24 fvex 6201 . . . . . 6  |-  ( R `
 f )  e. 
_V
25 neeq1 2856 . . . . . . . 8  |-  ( u  =  ( R `  f )  ->  (
u  =/=  X  <->  ( R `  f )  =/=  X
) )
26 neeq1 2856 . . . . . . . 8  |-  ( u  =  ( R `  f )  ->  (
u  =/=  Y  <->  ( R `  f )  =/=  Y
) )
27 neeq1 2856 . . . . . . . 8  |-  ( u  =  ( R `  f )  ->  (
u  =/=  Z  <->  ( R `  f )  =/=  Z
) )
2825, 26, 273anbi123d 1399 . . . . . . 7  |-  ( u  =  ( R `  f )  ->  (
( u  =/=  X  /\  u  =/=  Y  /\  u  =/=  Z
)  <->  ( ( R `
 f )  =/= 
X  /\  ( R `  f )  =/=  Y  /\  ( R `  f
)  =/=  Z ) ) )
2928anbi2d 740 . . . . . 6  |-  ( u  =  ( R `  f )  ->  (
( f  =/=  (  _I  |`  B )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/=  Z
) )  <->  ( f  =/=  (  _I  |`  B )  /\  ( ( R `
 f )  =/= 
X  /\  ( R `  f )  =/=  Y  /\  ( R `  f
)  =/=  Z ) ) ) )
3024, 29ceqsexv 3242 . . . . 5  |-  ( E. u ( u  =  ( R `  f
)  /\  ( f  =/=  (  _I  |`  B )  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) ) )  <->  ( f  =/=  (  _I  |`  B )  /\  ( ( R `
 f )  =/= 
X  /\  ( R `  f )  =/=  Y  /\  ( R `  f
)  =/=  Z ) ) )
3123, 30bitri 264 . . . 4  |-  ( E. u ( ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) )  <->  ( f  =/=  (  _I  |`  B )  /\  ( ( R `
 f )  =/= 
X  /\  ( R `  f )  =/=  Y  /\  ( R `  f
)  =/=  Z ) ) )
3231rexbii 3041 . . 3  |-  ( E. f  e.  T  E. u ( ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) )  <->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( ( R `
 f )  =/= 
X  /\  ( R `  f )  =/=  Y  /\  ( R `  f
)  =/=  Z ) ) )
33 r19.41v 3089 . . . 4  |-  ( E. f  e.  T  ( ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/= 
X  /\  u  =/=  Y  /\  u  =/=  Z
) )  <->  ( E. f  e.  T  (
u  =  ( R `
 f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) ) )
3433exbii 1774 . . 3  |-  ( E. u E. f  e.  T  ( ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) )  <->  E. u
( E. f  e.  T  ( u  =  ( R `  f
)  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) ) )
3521, 32, 343bitr3ri 291 . 2  |-  ( E. u ( E. f  e.  T  ( u  =  ( R `  f )  /\  f  =/=  (  _I  |`  B ) )  /\  ( u  =/=  X  /\  u  =/=  Y  /\  u  =/= 
Z ) )  <->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( ( R `
 f )  =/= 
X  /\  ( R `  f )  =/=  Y  /\  ( R `  f
)  =/=  Z ) ) )
3620, 35sylib 208 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( ( R `  f )  =/=  X  /\  ( R `  f
)  =/=  Y  /\  ( R `  f )  =/=  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653    _I cid 5023    |` cres 5116   ` cfv 5888   Basecbs 15857   lecple 15948   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  cdlemftr2  35854  cdlemk26-3  36194  cdlemk11t  36234
  Copyright terms: Public domain W3C validator