Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17h Structured version   Visualization version   Unicode version

Theorem cdlemg17h 35956
Description: TODO: fix comment. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg17h  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( S  =  ( F `  P
)  \/  S  =  ( F `  Q
) ) )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r    F, r    S, r
Allowed substitution hints:    R( r)    T( r)    H( r)    K( r)    ./\ ( r)

Proof of Theorem cdlemg17h
StepHypRef Expression
1 simp11l 1172 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
2 simp23r 1183 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) )
3 simp11 1091 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
4 simp22l 1180 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  F  e.  T
)
5 simp21l 1178 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  S  e.  A
)
6 cdlemg12.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
7 cdlemg12.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
8 cdlemg12.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
9 cdlemg12.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
106, 7, 8, 9ltrncnvat 35427 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  S  e.  A
)  ->  ( `' F `  S )  e.  A )
113, 4, 5, 10syl3anc 1326 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( `' F `  S )  e.  A
)
12 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1312, 7atbase 34576 . . . . . . 7  |-  ( ( `' F `  S )  e.  A  ->  ( `' F `  S )  e.  ( Base `  K
) )
1411, 13syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( `' F `  S )  e.  (
Base `  K )
)
15 simp12l 1174 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
16 simp13l 1176 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  A
)
17 cdlemg12.j . . . . . . . 8  |-  .\/  =  ( join `  K )
1812, 17, 7hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
191, 15, 16, 18syl3anc 1326 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
2012, 6, 8, 9ltrnle 35415 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( `' F `  S )  e.  (
Base `  K )  /\  ( P  .\/  Q
)  e.  ( Base `  K ) ) )  ->  ( ( `' F `  S ) 
.<_  ( P  .\/  Q
)  <->  ( F `  ( `' F `  S ) )  .<_  ( F `  ( P  .\/  Q
) ) ) )
213, 4, 14, 19, 20syl112anc 1330 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( `' F `  S ) 
.<_  ( P  .\/  Q
)  <->  ( F `  ( `' F `  S ) )  .<_  ( F `  ( P  .\/  Q
) ) ) )
2212, 8, 9ltrn1o 35410 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
233, 4, 22syl2anc 693 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  F : (
Base `  K ) -1-1-onto-> ( Base `  K ) )
2412, 7atbase 34576 . . . . . . . 8  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
255, 24syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  S  e.  (
Base `  K )
)
26 f1ocnvfv2 6533 . . . . . . 7  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( F `  ( `' F `  S ) )  =  S )
2723, 25, 26syl2anc 693 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  ( `' F `  S ) )  =  S )
2812, 7atbase 34576 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2915, 28syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  (
Base `  K )
)
3012, 7atbase 34576 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3116, 30syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  (
Base `  K )
)
3212, 17, 8, 9ltrnj 35418 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  (
Base `  K )  /\  Q  e.  ( Base `  K ) ) )  ->  ( F `  ( P  .\/  Q
) )  =  ( ( F `  P
)  .\/  ( F `  Q ) ) )
333, 4, 29, 31, 32syl112anc 1330 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  ( P  .\/  Q ) )  =  ( ( F `  P ) 
.\/  ( F `  Q ) ) )
3427, 33breq12d 4666 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( F `
 ( `' F `  S ) )  .<_  ( F `  ( P 
.\/  Q ) )  <-> 
S  .<_  ( ( F `
 P )  .\/  ( F `  Q ) ) ) )
3521, 34bitr2d 269 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( S  .<_  ( ( F `  P
)  .\/  ( F `  Q ) )  <->  ( `' F `  S )  .<_  ( P  .\/  Q
) ) )
362, 35mpbid 222 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( `' F `  S )  .<_  ( P 
.\/  Q ) )
37 simp33 1099 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
38 simp23l 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  =/=  Q
)
39 simp21 1094 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
406, 7, 8, 9ltrncnvel 35428 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( ( `' F `  S )  e.  A  /\  -.  ( `' F `  S ) 
.<_  W ) )
413, 4, 39, 40syl3anc 1326 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( `' F `  S )  e.  A  /\  -.  ( `' F `  S ) 
.<_  W ) )
426, 17, 7cdleme0nex 35577 . . 3  |-  ( ( ( K  e.  HL  /\  ( `' F `  S )  .<_  ( P 
.\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( `' F `  S )  e.  A  /\  -.  ( `' F `  S )  .<_  W ) )  ->  ( ( `' F `  S )  =  P  \/  ( `' F `  S )  =  Q ) )
431, 36, 37, 15, 16, 38, 41, 42syl331anc 1351 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( `' F `  S )  =  P  \/  ( `' F `  S )  =  Q ) )
44 eqcom 2629 . . . 4  |-  ( ( F `  P )  =  S  <->  S  =  ( F `  P ) )
45 f1ocnvfvb 6535 . . . . 5  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  P  e.  ( Base `  K )  /\  S  e.  ( Base `  K ) )  ->  ( ( F `
 P )  =  S  <->  ( `' F `  S )  =  P ) )
4623, 29, 25, 45syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( F `
 P )  =  S  <->  ( `' F `  S )  =  P ) )
4744, 46syl5rbbr 275 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( `' F `  S )  =  P  <->  S  =  ( F `  P ) ) )
48 eqcom 2629 . . . 4  |-  ( ( F `  Q )  =  S  <->  S  =  ( F `  Q ) )
49 f1ocnvfvb 6535 . . . . 5  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  Q  e.  ( Base `  K )  /\  S  e.  ( Base `  K ) )  ->  ( ( F `
 Q )  =  S  <->  ( `' F `  S )  =  Q ) )
5023, 31, 25, 49syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( F `
 Q )  =  S  <->  ( `' F `  S )  =  Q ) )
5148, 50syl5rbbr 275 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( `' F `  S )  =  Q  <->  S  =  ( F `  Q ) ) )
5247, 51orbi12d 746 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( ( `' F `  S )  =  P  \/  ( `' F `  S )  =  Q )  <->  ( S  =  ( F `  P )  \/  S  =  ( F `  Q ) ) ) )
5343, 52mpbid 222 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  =/=  Q  /\  S  .<_  ( ( F `  P ) 
.\/  ( F `  Q ) ) ) )  /\  ( ( G `  P )  =/=  P  /\  ( R `  G )  .<_  ( P  .\/  Q
)  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( S  =  ( F `  P
)  \/  S  =  ( F `  Q
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   `'ccnv 5113   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391
This theorem is referenced by:  cdlemg17i  35957
  Copyright terms: Public domain W3C validator