Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg42 Structured version   Visualization version   Unicode version

Theorem cdlemg42 36017
Description: Part of proof of Lemma G of [Crawley] p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg42.l  |-  .<_  =  ( le `  K )
cdlemg42.j  |-  .\/  =  ( join `  K )
cdlemg42.a  |-  A  =  ( Atoms `  K )
cdlemg42.h  |-  H  =  ( LHyp `  K
)
cdlemg42.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg42.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg42  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  -.  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) )

Proof of Theorem cdlemg42
StepHypRef Expression
1 simp33 1099 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
2 simpl1l 1112 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  K  e.  HL )
3 simp31l 1184 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  P  e.  A )
43adantr 481 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  e.  A )
5 simp1 1061 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simp2l 1087 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  F  e.  T )
7 cdlemg42.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
8 cdlemg42.a . . . . . . . . . . . 12  |-  A  =  ( Atoms `  K )
9 cdlemg42.h . . . . . . . . . . . 12  |-  H  =  ( LHyp `  K
)
10 cdlemg42.t . . . . . . . . . . . 12  |-  T  =  ( ( LTrn `  K
) `  W )
117, 8, 9, 10ltrnat 35426 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  A
)  ->  ( F `  P )  e.  A
)
125, 6, 3, 11syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  P )  e.  A
)
1312adantr 481 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  P )  e.  A )
14 cdlemg42.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
157, 14, 8hlatlej1 34661 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  ->  P  .<_  ( P  .\/  ( F `  P ) ) )
162, 4, 13, 15syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  .<_  ( P  .\/  ( F `  P )
) )
17 simpr 477 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) )
18 hllat 34650 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
192, 18syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  K  e.  Lat )
20 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
2120, 8atbase 34576 . . . . . . . . . 10  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
224, 21syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  e.  ( Base `  K
) )
23 simp2r 1088 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  G  e.  T )
247, 8, 9, 10ltrnat 35426 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  P  e.  A
)  ->  ( G `  P )  e.  A
)
255, 23, 3, 24syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( G `  P )  e.  A
)
2625adantr 481 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  e.  A )
2720, 8atbase 34576 . . . . . . . . . 10  |-  ( ( G `  P )  e.  A  ->  ( G `  P )  e.  ( Base `  K
) )
2826, 27syl 17 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  e.  ( Base `  K
) )
2920, 14, 8hlatjcl 34653 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( F `  P )  e.  A )  -> 
( P  .\/  ( F `  P )
)  e.  ( Base `  K ) )
302, 4, 13, 29syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( F `  P ) )  e.  ( Base `  K
) )
3120, 7, 14latjle12 17062 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( G `  P )  e.  ( Base `  K
)  /\  ( P  .\/  ( F `  P
) )  e.  (
Base `  K )
) )  ->  (
( P  .<_  ( P 
.\/  ( F `  P ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  <->  ( P  .\/  ( G `  P
) )  .<_  ( P 
.\/  ( F `  P ) ) ) )
3219, 22, 28, 30, 31syl13anc 1328 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  (
( P  .<_  ( P 
.\/  ( F `  P ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  <->  ( P  .\/  ( G `  P
) )  .<_  ( P 
.\/  ( F `  P ) ) ) )
3316, 17, 32mpbi2and 956 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( G `  P ) )  .<_  ( P  .\/  ( F `
 P ) ) )
34 simpl32 1143 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( G `  P )  =/=  P )
3534necomd 2849 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  P  =/=  ( G `  P
) )
367, 14, 8ps-1 34763 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( G `  P
)  e.  A  /\  P  =/=  ( G `  P ) )  /\  ( P  e.  A  /\  ( F `  P
)  e.  A ) )  ->  ( ( P  .\/  ( G `  P ) )  .<_  ( P  .\/  ( F `
 P ) )  <-> 
( P  .\/  ( G `  P )
)  =  ( P 
.\/  ( F `  P ) ) ) )
372, 4, 26, 35, 4, 13, 36syl132anc 1344 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  (
( P  .\/  ( G `  P )
)  .<_  ( P  .\/  ( F `  P ) )  <->  ( P  .\/  ( G `  P ) )  =  ( P 
.\/  ( F `  P ) ) ) )
3833, 37mpbid 222 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  .\/  ( G `  P ) )  =  ( P  .\/  ( F `  P )
) )
3938oveq1d 6665 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  (
( P  .\/  ( G `  P )
) ( meet `  K
) W )  =  ( ( P  .\/  ( F `  P ) ) ( meet `  K
) W ) )
40 simpl1 1064 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
41 simpl2r 1115 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  G  e.  T )
42 simpl31 1142 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
43 eqid 2622 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
44 cdlemg42.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
457, 14, 43, 8, 9, 10, 44trlval2 35450 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  G )  =  ( ( P  .\/  ( G `  P )
) ( meet `  K
) W ) )
4640, 41, 42, 45syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( R `  G )  =  ( ( P 
.\/  ( G `  P ) ) (
meet `  K ) W ) )
47 simpl2l 1114 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  F  e.  T )
487, 14, 43, 8, 9, 10, 44trlval2 35450 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
4940, 47, 42, 48syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( R `  F )  =  ( ( P 
.\/  ( F `  P ) ) (
meet `  K ) W ) )
5039, 46, 493eqtr4rd 2667 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `
 F )  =/=  ( R `  G
) ) )  /\  ( G `  P ) 
.<_  ( P  .\/  ( F `  P )
) )  ->  ( R `  F )  =  ( R `  G ) )
5150ex 450 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( ( G `  P )  .<_  ( P  .\/  ( F `  P )
)  ->  ( R `  F )  =  ( R `  G ) ) )
5251necon3ad 2807 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( ( R `  F )  =/=  ( R `  G
)  ->  -.  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) ) )
531, 52mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  -.  ( G `  P )  .<_  ( P  .\/  ( F `  P )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  cdlemg43  36018
  Copyright terms: Public domain W3C validator