| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk15 | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma K
of [Crawley] p. 118. Line 21 on p. 119.
|
| Ref | Expression |
|---|---|
| cdlemk1.b |
|
| cdlemk1.l |
|
| cdlemk1.j |
|
| cdlemk1.m |
|
| cdlemk1.a |
|
| cdlemk1.h |
|
| cdlemk1.t |
|
| cdlemk1.r |
|
| cdlemk1.s |
|
| cdlemk1.o |
|
| Ref | Expression |
|---|---|
| cdlemk15 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp11l 1172 |
. . . 4
| |
| 2 | simp22l 1180 |
. . . 4
| |
| 3 | simp11 1091 |
. . . . 5
| |
| 4 | simp21 1094 |
. . . . 5
| |
| 5 | cdlemk1.l |
. . . . . 6
| |
| 6 | cdlemk1.a |
. . . . . 6
| |
| 7 | cdlemk1.h |
. . . . . 6
| |
| 8 | cdlemk1.t |
. . . . . 6
| |
| 9 | 5, 6, 7, 8 | ltrnat 35426 |
. . . . 5
|
| 10 | 3, 4, 2, 9 | syl3anc 1326 |
. . . 4
|
| 11 | cdlemk1.j |
. . . . 5
| |
| 12 | 5, 11, 6 | hlatlej2 34662 |
. . . 4
|
| 13 | 1, 2, 10, 12 | syl3anc 1326 |
. . 3
|
| 14 | simp23 1096 |
. . . . 5
| |
| 15 | 14 | oveq2d 6666 |
. . . 4
|
| 16 | simp22 1095 |
. . . . 5
| |
| 17 | cdlemk1.r |
. . . . . 6
| |
| 18 | 5, 11, 6, 7, 8, 17 | trljat1 35453 |
. . . . 5
|
| 19 | 3, 4, 16, 18 | syl3anc 1326 |
. . . 4
|
| 20 | 15, 19 | eqtr2d 2657 |
. . 3
|
| 21 | 13, 20 | breqtrd 4679 |
. 2
|
| 22 | cdlemk1.b |
. . 3
| |
| 23 | cdlemk1.m |
. . 3
| |
| 24 | cdlemk1.s |
. . 3
| |
| 25 | cdlemk1.o |
. . 3
| |
| 26 | 22, 5, 11, 23, 6, 7, 8, 17, 24, 25 | cdlemk14 36142 |
. 2
|
| 27 | hllat 34650 |
. . . 4
| |
| 28 | 1, 27 | syl 17 |
. . 3
|
| 29 | 22, 6 | atbase 34576 |
. . . 4
|
| 30 | 10, 29 | syl 17 |
. . 3
|
| 31 | simp12 1092 |
. . . . 5
| |
| 32 | simp31 1097 |
. . . . 5
| |
| 33 | 22, 6, 7, 8, 17 | trlnidat 35460 |
. . . . 5
|
| 34 | 3, 31, 32, 33 | syl3anc 1326 |
. . . 4
|
| 35 | 22, 11, 6 | hlatjcl 34653 |
. . . 4
|
| 36 | 1, 2, 34, 35 | syl3anc 1326 |
. . 3
|
| 37 | 25 | fveq1i 6192 |
. . . . 5
|
| 38 | 22, 5, 11, 6, 7, 8, 17, 23, 24 | cdlemksat 36134 |
. . . . 5
|
| 39 | 37, 38 | syl5eqel 2705 |
. . . 4
|
| 40 | simp13 1093 |
. . . . 5
| |
| 41 | simp33 1099 |
. . . . . 6
| |
| 42 | 41 | necomd 2849 |
. . . . 5
|
| 43 | 6, 7, 8, 17 | trlcocnvat 36012 |
. . . . 5
|
| 44 | 3, 31, 40, 42, 43 | syl121anc 1331 |
. . . 4
|
| 45 | 22, 11, 6 | hlatjcl 34653 |
. . . 4
|
| 46 | 1, 39, 44, 45 | syl3anc 1326 |
. . 3
|
| 47 | 22, 5, 23 | latlem12 17078 |
. . 3
|
| 48 | 28, 30, 36, 46, 47 | syl13anc 1328 |
. 2
|
| 49 | 21, 26, 48 | mpbi2and 956 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 |
| This theorem is referenced by: cdlemk17 36146 cdlemk15-2N 36167 |
| Copyright terms: Public domain | W3C validator |