Proof of Theorem cdlemk4
Step | Hyp | Ref
| Expression |
1 | | simp1l 1085 |
. . 3
      
 
  |
2 | | simp1 1061 |
. . . 4
      
 
    |
3 | | simp2l 1087 |
. . . 4
      
 
  |
4 | | simp3l 1089 |
. . . 4
      
 
  |
5 | | cdlemk.l |
. . . . 5
     |
6 | | cdlemk.a |
. . . . 5
     |
7 | | cdlemk.h |
. . . . 5
     |
8 | | cdlemk.t |
. . . . 5
         |
9 | 5, 6, 7, 8 | ltrnat 35426 |
. . . 4
   

      |
10 | 2, 3, 4, 9 | syl3anc 1326 |
. . 3
      
 
      |
11 | | simp2r 1088 |
. . . 4
      
 
  |
12 | 5, 6, 7, 8 | ltrnat 35426 |
. . . 4
   

      |
13 | 2, 11, 4, 12 | syl3anc 1326 |
. . 3
      
 
      |
14 | | cdlemk.j |
. . . 4
     |
15 | 5, 14, 6 | hlatlej1 34661 |
. . 3
                           |
16 | 1, 10, 13, 15 | syl3anc 1326 |
. 2
      
 
                |
17 | | hllat 34650 |
. . . . . 6
   |
18 | 1, 17 | syl 17 |
. . . . 5
      
 
  |
19 | | cdlemk.b |
. . . . . . 7
     |
20 | 19, 6 | atbase 34576 |
. . . . . 6
           |
21 | 10, 20 | syl 17 |
. . . . 5
      
 
      |
22 | 19, 6 | atbase 34576 |
. . . . . 6
           |
23 | 13, 22 | syl 17 |
. . . . 5
      
 
      |
24 | 19, 14 | latjcl 17051 |
. . . . 5
               
       |
25 | 18, 21, 23, 24 | syl3anc 1326 |
. . . 4
      
 
            |
26 | | simp1r 1086 |
. . . . 5
      
 
  |
27 | 19, 7 | lhpbase 35284 |
. . . . 5
   |
28 | 26, 27 | syl 17 |
. . . 4
      
 
  |
29 | 5, 14, 6 | hlatlej2 34662 |
. . . . 5
                           |
30 | 1, 10, 13, 29 | syl3anc 1326 |
. . . 4
      
 
                |
31 | | cdlemk.m |
. . . . 5
     |
32 | 19, 5, 14, 31, 6 | atmod3i1 35150 |
. . . 4
                
                    
     
                 
         |
33 | 1, 13, 25, 28, 30, 32 | syl131anc 1339 |
. . 3
      
 
               
       
              |
34 | 7, 8 | ltrncnv 35432 |
. . . . . . . 8
    
   |
35 | 2, 3, 34 | syl2anc 693 |
. . . . . . 7
      
 
   |
36 | 7, 8 | ltrnco 36007 |
. . . . . . 7
    

     |
37 | 2, 11, 35, 36 | syl3anc 1326 |
. . . . . 6
      
 
     |
38 | 5, 6, 7, 8 | ltrnel 35425 |
. . . . . . 7
      
    
       |
39 | 3, 38 | syld3an2 1373 |
. . . . . 6
      
 
    
       |
40 | | cdlemk.r |
. . . . . . 7
         |
41 | 5, 14, 31, 6, 7, 8,
40 | trlval2 35450 |
. . . . . 6
                 
                            |
42 | 2, 37, 39, 41 | syl3anc 1326 |
. . . . 5
      
 
                            |
43 | 19, 7, 8 | ltrn1o 35410 |
. . . . . . . . . . . . . . 15
    
      |
44 | 2, 3, 43 | syl2anc 693 |
. . . . . . . . . . . . . 14
      
 
      |
45 | | f1ococnv1 6165 |
. . . . . . . . . . . . . 14
    
 

   |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . 13
      
 
 

   |
47 | 46 | coeq2d 5284 |
. . . . . . . . . . . 12
      
 
          |
48 | 19, 7, 8 | ltrn1o 35410 |
. . . . . . . . . . . . . 14
    
      |
49 | 2, 11, 48 | syl2anc 693 |
. . . . . . . . . . . . 13
      
 
      |
50 | | f1of 6137 |
. . . . . . . . . . . . 13
    
      |
51 | | fcoi1 6078 |
. . . . . . . . . . . . 13
          |
52 | 49, 50, 51 | 3syl 18 |
. . . . . . . . . . . 12
      
 

    |
53 | 47, 52 | eqtr2d 2657 |
. . . . . . . . . . 11
      
 

 
    |
54 | | coass 5654 |
. . . . . . . . . . 11
       
   |
55 | 53, 54 | syl6eqr 2674 |
. . . . . . . . . 10
      
 
       |
56 | 55 | fveq1d 6193 |
. . . . . . . . 9
      
 
               |
57 | 5, 6, 7, 8 | ltrncoval 35431 |
. . . . . . . . . 10
                                |
58 | 2, 37, 3, 4, 57 | syl121anc 1331 |
. . . . . . . . 9
      
 
                      |
59 | 56, 58 | eqtrd 2656 |
. . . . . . . 8
      
 
                 |
60 | 59 | oveq2d 6666 |
. . . . . . 7
      
 
              
 
            |
61 | 60 | eqcomd 2628 |
. . . . . 6
      
 
                     
       |
62 | 61 | oveq1d 6665 |
. . . . 5
      
 
     
 
                     
   |
63 | 42, 62 | eqtrd 2656 |
. . . 4
      
 
                 
   |
64 | 63 | oveq2d 6666 |
. . 3
      
 
        
                   
    |
65 | 5, 6, 7, 8 | ltrnel 35425 |
. . . . . . 7
      
    
       |
66 | 11, 65 | syld3an2 1373 |
. . . . . 6
      
 
    
       |
67 | | eqid 2622 |
. . . . . . 7
         |
68 | 5, 14, 67, 6, 7 | lhpjat2 35307 |
. . . . . 6
                           |
69 | 2, 66, 68 | syl2anc 693 |
. . . . 5
      
 
            |
70 | 69 | oveq2d 6666 |
. . . 4
      
 
     
                      
       |
71 | | hlol 34648 |
. . . . . 6
   |
72 | 1, 71 | syl 17 |
. . . . 5
      
 
  |
73 | 19, 31, 67 | olm11 34514 |
. . . . 5
                                         |
74 | 72, 25, 73 | syl2anc 693 |
. . . 4
      
 
     
                      |
75 | 70, 74 | eqtr2d 2657 |
. . 3
      
 
                    
         |
76 | 33, 64, 75 | 3eqtr4rd 2667 |
. 2
      
 
              
          |
77 | 16, 76 | breqtrd 4679 |
1
      
 
            
      |