| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk55a | Structured version Visualization version Unicode version | ||
| Description: Lemma for cdlemk55 36249. (Contributed by NM, 26-Jul-2013.) |
| Ref | Expression |
|---|---|
| cdlemk5.b |
|
| cdlemk5.l |
|
| cdlemk5.j |
|
| cdlemk5.m |
|
| cdlemk5.a |
|
| cdlemk5.h |
|
| cdlemk5.t |
|
| cdlemk5.r |
|
| cdlemk5.z |
|
| cdlemk5.y |
|
| cdlemk5.x |
|
| Ref | Expression |
|---|---|
| cdlemk55a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1085 |
. . . . . . 7
| |
| 2 | simp211 1199 |
. . . . . . . . 9
| |
| 3 | simp212 1200 |
. . . . . . . . 9
| |
| 4 | 2, 3 | jca 554 |
. . . . . . . 8
|
| 5 | simp32 1098 |
. . . . . . . 8
| |
| 6 | simp213 1201 |
. . . . . . . 8
| |
| 7 | simp23 1096 |
. . . . . . . . 9
| |
| 8 | simp1r 1086 |
. . . . . . . . 9
| |
| 9 | 7, 8 | jca 554 |
. . . . . . . 8
|
| 10 | cdlemk5.b |
. . . . . . . . 9
| |
| 11 | cdlemk5.l |
. . . . . . . . 9
| |
| 12 | cdlemk5.j |
. . . . . . . . 9
| |
| 13 | cdlemk5.m |
. . . . . . . . 9
| |
| 14 | cdlemk5.a |
. . . . . . . . 9
| |
| 15 | cdlemk5.h |
. . . . . . . . 9
| |
| 16 | cdlemk5.t |
. . . . . . . . 9
| |
| 17 | cdlemk5.r |
. . . . . . . . 9
| |
| 18 | cdlemk5.z |
. . . . . . . . 9
| |
| 19 | cdlemk5.y |
. . . . . . . . 9
| |
| 20 | cdlemk5.x |
. . . . . . . . 9
| |
| 21 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdlemk35s-id 36226 |
. . . . . . . 8
|
| 22 | 1, 4, 5, 6, 9, 21 | syl131anc 1339 |
. . . . . . 7
|
| 23 | 10, 15, 16 | ltrn1o 35410 |
. . . . . . 7
|
| 24 | 1, 22, 23 | syl2anc 693 |
. . . . . 6
|
| 25 | f1ococnv2 6163 |
. . . . . 6
| |
| 26 | 24, 25 | syl 17 |
. . . . 5
|
| 27 | 26 | coeq2d 5284 |
. . . 4
|
| 28 | simp22 1095 |
. . . . . . . 8
| |
| 29 | simp31l 1184 |
. . . . . . . 8
| |
| 30 | 15, 16 | ltrnco 36007 |
. . . . . . . 8
|
| 31 | 1, 28, 29, 30 | syl3anc 1326 |
. . . . . . 7
|
| 32 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdlemk35s-id 36226 |
. . . . . . 7
|
| 33 | 1, 4, 31, 6, 9, 32 | syl131anc 1339 |
. . . . . 6
|
| 34 | 10, 15, 16 | ltrn1o 35410 |
. . . . . 6
|
| 35 | 1, 33, 34 | syl2anc 693 |
. . . . 5
|
| 36 | f1of 6137 |
. . . . 5
| |
| 37 | fcoi1 6078 |
. . . . 5
| |
| 38 | 35, 36, 37 | 3syl 18 |
. . . 4
|
| 39 | 27, 38 | eqtr2d 2657 |
. . 3
|
| 40 | coass 5654 |
. . 3
| |
| 41 | 39, 40 | syl6eqr 2674 |
. 2
|
| 42 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdlemk54 36246 |
. . . 4
|
| 43 | 42 | coeq1d 5283 |
. . 3
|
| 44 | coass 5654 |
. . . 4
| |
| 45 | 26 | coeq2d 5284 |
. . . . 5
|
| 46 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdlemk35s-id 36226 |
. . . . . . . . 9
|
| 47 | 1, 4, 28, 6, 9, 46 | syl131anc 1339 |
. . . . . . . 8
|
| 48 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdlemk35s-id 36226 |
. . . . . . . . 9
|
| 49 | 1, 4, 29, 6, 9, 48 | syl131anc 1339 |
. . . . . . . 8
|
| 50 | 15, 16 | ltrnco 36007 |
. . . . . . . 8
|
| 51 | 1, 47, 49, 50 | syl3anc 1326 |
. . . . . . 7
|
| 52 | 10, 15, 16 | ltrn1o 35410 |
. . . . . . 7
|
| 53 | 1, 51, 52 | syl2anc 693 |
. . . . . 6
|
| 54 | f1of 6137 |
. . . . . 6
| |
| 55 | fcoi1 6078 |
. . . . . 6
| |
| 56 | 53, 54, 55 | 3syl 18 |
. . . . 5
|
| 57 | 45, 56 | eqtrd 2656 |
. . . 4
|
| 58 | 44, 57 | syl5eq 2668 |
. . 3
|
| 59 | 43, 58 | eqtrd 2656 |
. 2
|
| 60 | 41, 59 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 |
| This theorem is referenced by: cdlemk55b 36248 |
| Copyright terms: Public domain | W3C validator |