Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml3N Structured version   Visualization version   Unicode version

Theorem cdleml3N 36266
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b  |-  B  =  ( Base `  K
)
cdleml1.h  |-  H  =  ( LHyp `  K
)
cdleml1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml1.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml1.e  |-  E  =  ( ( TEndo `  K
) `  W )
cdleml3.o  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
cdleml3N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
Distinct variable groups:    E, s    K, s    R, s    T, s    U, s    V, s    W, s, f, g    B, g, s    f, E    f,
g, H, s    f, K, g    .0. , f, s    T, f, g    U, f   
f, V    f, W, g
Allowed substitution hints:    B( f)    R( f, g)    U( g)    E( g)    V( g)    .0. ( g)

Proof of Theorem cdleml3N
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp2 1062 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( U  e.  E  /\  V  e.  E  /\  f  e.  T
) )
3 simp31 1097 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
f  =/=  (  _I  |`  B ) )
4 simp32 1098 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  U  =/=  .0.  )
5 simp21 1094 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  U  e.  E )
6 simp23 1096 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
f  e.  T )
7 cdleml1.b . . . . . . 7  |-  B  =  ( Base `  K
)
8 cdleml1.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
9 cdleml1.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdleml1.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
11 cdleml3.o . . . . . . 7  |-  .0.  =  ( g  e.  T  |->  (  _I  |`  B ) )
127, 8, 9, 10, 11tendoid0 36113 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( f  e.  T  /\  f  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  f )  =  (  _I  |`  B )  <-> 
U  =  .0.  )
)
131, 5, 6, 3, 12syl112anc 1330 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( ( U `  f )  =  (  _I  |`  B )  <->  U  =  .0.  ) )
1413necon3bid 2838 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( ( U `  f )  =/=  (  _I  |`  B )  <->  U  =/=  .0.  ) )
154, 14mpbird 247 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( U `  f
)  =/=  (  _I  |`  B ) )
16 simp33 1099 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  V  =/=  .0.  )
17 simp22 1095 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  V  e.  E )
187, 8, 9, 10, 11tendoid0 36113 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  ( f  e.  T  /\  f  =/=  (  _I  |`  B ) ) )  ->  ( ( V `  f )  =  (  _I  |`  B )  <-> 
V  =  .0.  )
)
191, 17, 6, 3, 18syl112anc 1330 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( ( V `  f )  =  (  _I  |`  B )  <->  V  =  .0.  ) )
2019necon3bid 2838 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( ( V `  f )  =/=  (  _I  |`  B )  <->  V  =/=  .0.  ) )
2116, 20mpbird 247 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( V `  f
)  =/=  (  _I  |`  B ) )
22 cdleml1.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
237, 8, 9, 22, 10cdleml2N 36265 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  E. s  e.  E  ( s `  ( U `  f
) )  =  ( V `  f ) )
241, 2, 3, 15, 21, 23syl113anc 1338 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  E. s  e.  E  ( s `  ( U `  f )
)  =  ( V `
 f ) )
25 simpl1 1064 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( K  e.  HL  /\  W  e.  H ) )
26 simpr 477 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  s  e.  E )
27 simpl21 1139 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  U  e.  E )
28 simpl23 1141 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  f  e.  T )
298, 9, 10tendocoval 36054 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  U  e.  E )  /\  f  e.  T )  ->  (
( s  o.  U
) `  f )  =  ( s `  ( U `  f ) ) )
3025, 26, 27, 28, 29syl121anc 1331 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( ( s  o.  U ) `  f
)  =  ( s `
 ( U `  f ) ) )
3130eqeq1d 2624 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( ( ( s  o.  U ) `  f )  =  ( V `  f )  <-> 
( s `  ( U `  f )
)  =  ( V `
 f ) ) )
32 simp11 1091 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
33 simp2 1062 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  s  e.  E
)
34 simp121 1193 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  U  e.  E
)
358, 10tendococl 36060 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  U  e.  E
)  ->  ( s  o.  U )  e.  E
)
3632, 33, 34, 35syl3anc 1326 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  ( s  o.  U )  e.  E
)
37 simp122 1194 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  V  e.  E
)
38 simp3 1063 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  ( ( s  o.  U ) `  f )  =  ( V `  f ) )
39 simp123 1195 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  f  e.  T
)
40 simp131 1196 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  f  =/=  (  _I  |`  B ) )
417, 8, 9, 10tendocan 36112 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( s  o.  U )  e.  E  /\  V  e.  E  /\  ( ( s  o.  U ) `
 f )  =  ( V `  f
) )  /\  (
f  e.  T  /\  f  =/=  (  _I  |`  B ) ) )  ->  (
s  o.  U )  =  V )
4232, 36, 37, 38, 39, 40, 41syl132anc 1344 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E  /\  ( ( s  o.  U ) `  f
)  =  ( V `
 f ) )  ->  ( s  o.  U )  =  V )
43423expia 1267 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( ( ( s  o.  U ) `  f )  =  ( V `  f )  ->  ( s  o.  U )  =  V ) )
4431, 43sylbird 250 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  ( f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/=  .0.  ) )  /\  s  e.  E )  ->  ( ( s `  ( U `  f ) )  =  ( V `
 f )  -> 
( s  o.  U
)  =  V ) )
4544reximdva 3017 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  -> 
( E. s  e.  E  ( s `  ( U `  f ) )  =  ( V `
 f )  ->  E. s  e.  E  ( s  o.  U
)  =  V ) )
4624, 45mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  U  =/=  .0.  /\  V  =/= 
.0.  ) )  ->  E. s  e.  E  ( s  o.  U
)  =  V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913    |-> cmpt 4729    _I cid 5023    |` cres 5116    o. ccom 5118   ` cfv 5888   Basecbs 15857   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   TEndoctendo 36040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446  df-tendo 36043
This theorem is referenced by:  cdleml4N  36267
  Copyright terms: Public domain W3C validator