Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem1 Structured version   Visualization version   Unicode version

Theorem cevathlem1 41056
Description: Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevathlem1.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
cevathlem1.b  |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC  /\  F  e.  CC )
)
cevathlem1.c  |-  ( ph  ->  ( G  e.  CC  /\  H  e.  CC  /\  K  e.  CC )
)
cevathlem1.d  |-  ( ph  ->  ( A  =/=  0  /\  E  =/=  0  /\  C  =/=  0
) )
cevathlem1.e  |-  ( ph  ->  ( ( A  x.  B )  =  ( C  x.  D )  /\  ( E  x.  F )  =  ( A  x.  G )  /\  ( C  x.  H )  =  ( E  x.  K ) ) )
Assertion
Ref Expression
cevathlem1  |-  ( ph  ->  ( ( B  x.  F )  x.  H
)  =  ( ( D  x.  G )  x.  K ) )

Proof of Theorem cevathlem1
StepHypRef Expression
1 cevathlem1.a . . . . 5  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
21simp2d 1074 . . . 4  |-  ( ph  ->  B  e.  CC )
3 cevathlem1.b . . . . 5  |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC  /\  F  e.  CC )
)
43simp3d 1075 . . . 4  |-  ( ph  ->  F  e.  CC )
52, 4mulcld 10060 . . 3  |-  ( ph  ->  ( B  x.  F
)  e.  CC )
6 cevathlem1.c . . . 4  |-  ( ph  ->  ( G  e.  CC  /\  H  e.  CC  /\  K  e.  CC )
)
76simp2d 1074 . . 3  |-  ( ph  ->  H  e.  CC )
85, 7mulcld 10060 . 2  |-  ( ph  ->  ( ( B  x.  F )  x.  H
)  e.  CC )
93simp1d 1073 . . . 4  |-  ( ph  ->  D  e.  CC )
106simp1d 1073 . . . 4  |-  ( ph  ->  G  e.  CC )
119, 10mulcld 10060 . . 3  |-  ( ph  ->  ( D  x.  G
)  e.  CC )
126simp3d 1075 . . 3  |-  ( ph  ->  K  e.  CC )
1311, 12mulcld 10060 . 2  |-  ( ph  ->  ( ( D  x.  G )  x.  K
)  e.  CC )
141simp1d 1073 . . . 4  |-  ( ph  ->  A  e.  CC )
153simp2d 1074 . . . 4  |-  ( ph  ->  E  e.  CC )
1614, 15mulcld 10060 . . 3  |-  ( ph  ->  ( A  x.  E
)  e.  CC )
171simp3d 1075 . . 3  |-  ( ph  ->  C  e.  CC )
1816, 17mulcld 10060 . 2  |-  ( ph  ->  ( ( A  x.  E )  x.  C
)  e.  CC )
19 cevathlem1.d . . . . 5  |-  ( ph  ->  ( A  =/=  0  /\  E  =/=  0  /\  C  =/=  0
) )
2019simp1d 1073 . . . 4  |-  ( ph  ->  A  =/=  0 )
2119simp2d 1074 . . . 4  |-  ( ph  ->  E  =/=  0 )
2214, 15, 20, 21mulne0d 10679 . . 3  |-  ( ph  ->  ( A  x.  E
)  =/=  0 )
2319simp3d 1075 . . 3  |-  ( ph  ->  C  =/=  0 )
2416, 17, 22, 23mulne0d 10679 . 2  |-  ( ph  ->  ( ( A  x.  E )  x.  C
)  =/=  0 )
25 cevathlem1.e . . . . . . . 8  |-  ( ph  ->  ( ( A  x.  B )  =  ( C  x.  D )  /\  ( E  x.  F )  =  ( A  x.  G )  /\  ( C  x.  H )  =  ( E  x.  K ) ) )
2625simp1d 1073 . . . . . . 7  |-  ( ph  ->  ( A  x.  B
)  =  ( C  x.  D ) )
2725simp2d 1074 . . . . . . 7  |-  ( ph  ->  ( E  x.  F
)  =  ( A  x.  G ) )
2826, 27oveq12d 6668 . . . . . 6  |-  ( ph  ->  ( ( A  x.  B )  x.  ( E  x.  F )
)  =  ( ( C  x.  D )  x.  ( A  x.  G ) ) )
2914, 2, 15, 4mul4d 10248 . . . . . 6  |-  ( ph  ->  ( ( A  x.  B )  x.  ( E  x.  F )
)  =  ( ( A  x.  E )  x.  ( B  x.  F ) ) )
3017, 9, 14, 10mul4d 10248 . . . . . 6  |-  ( ph  ->  ( ( C  x.  D )  x.  ( A  x.  G )
)  =  ( ( C  x.  A )  x.  ( D  x.  G ) ) )
3128, 29, 303eqtr3d 2664 . . . . 5  |-  ( ph  ->  ( ( A  x.  E )  x.  ( B  x.  F )
)  =  ( ( C  x.  A )  x.  ( D  x.  G ) ) )
3225simp3d 1075 . . . . 5  |-  ( ph  ->  ( C  x.  H
)  =  ( E  x.  K ) )
3331, 32oveq12d 6668 . . . 4  |-  ( ph  ->  ( ( ( A  x.  E )  x.  ( B  x.  F
) )  x.  ( C  x.  H )
)  =  ( ( ( C  x.  A
)  x.  ( D  x.  G ) )  x.  ( E  x.  K ) ) )
3416, 5, 17, 7mul4d 10248 . . . 4  |-  ( ph  ->  ( ( ( A  x.  E )  x.  ( B  x.  F
) )  x.  ( C  x.  H )
)  =  ( ( ( A  x.  E
)  x.  C )  x.  ( ( B  x.  F )  x.  H ) ) )
3517, 14mulcld 10060 . . . . 5  |-  ( ph  ->  ( C  x.  A
)  e.  CC )
3635, 11, 15, 12mul4d 10248 . . . 4  |-  ( ph  ->  ( ( ( C  x.  A )  x.  ( D  x.  G
) )  x.  ( E  x.  K )
)  =  ( ( ( C  x.  A
)  x.  E )  x.  ( ( D  x.  G )  x.  K ) ) )
3733, 34, 363eqtr3d 2664 . . 3  |-  ( ph  ->  ( ( ( A  x.  E )  x.  C )  x.  (
( B  x.  F
)  x.  H ) )  =  ( ( ( C  x.  A
)  x.  E )  x.  ( ( D  x.  G )  x.  K ) ) )
3814, 15, 17mul32d 10246 . . . . 5  |-  ( ph  ->  ( ( A  x.  E )  x.  C
)  =  ( ( A  x.  C )  x.  E ) )
3914, 17mulcomd 10061 . . . . . 6  |-  ( ph  ->  ( A  x.  C
)  =  ( C  x.  A ) )
4039oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( A  x.  C )  x.  E
)  =  ( ( C  x.  A )  x.  E ) )
4138, 40eqtrd 2656 . . . 4  |-  ( ph  ->  ( ( A  x.  E )  x.  C
)  =  ( ( C  x.  A )  x.  E ) )
4241oveq1d 6665 . . 3  |-  ( ph  ->  ( ( ( A  x.  E )  x.  C )  x.  (
( D  x.  G
)  x.  K ) )  =  ( ( ( C  x.  A
)  x.  E )  x.  ( ( D  x.  G )  x.  K ) ) )
4337, 42eqtr4d 2659 . 2  |-  ( ph  ->  ( ( ( A  x.  E )  x.  C )  x.  (
( B  x.  F
)  x.  H ) )  =  ( ( ( A  x.  E
)  x.  C )  x.  ( ( D  x.  G )  x.  K ) ) )
448, 13, 18, 24, 43mulcanad 10662 1  |-  ( ph  ->  ( ( B  x.  F )  x.  H
)  =  ( ( D  x.  G )  x.  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  cevath  41058
  Copyright terms: Public domain W3C validator