Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem2 Structured version   Visualization version   Unicode version

Theorem cevathlem2 41057
Description: Ceva's theorem second lemma. Relate (doubled) areas of triangles  C A O and 
A B O with of segments  B D and 
D C. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevath.sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
cevath.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
cevath.b  |-  ( ph  ->  ( F  e.  CC  /\  D  e.  CC  /\  E  e.  CC )
)
cevath.c  |-  ( ph  ->  O  e.  CC )
cevath.d  |-  ( ph  ->  ( ( ( A  -  O ) G ( D  -  O
) )  =  0  /\  ( ( B  -  O ) G ( E  -  O
) )  =  0  /\  ( ( C  -  O ) G ( F  -  O
) )  =  0 ) )
cevath.e  |-  ( ph  ->  ( ( ( A  -  F ) G ( B  -  F
) )  =  0  /\  ( ( B  -  D ) G ( C  -  D
) )  =  0  /\  ( ( C  -  E ) G ( A  -  E
) )  =  0 ) )
cevath.f  |-  ( ph  ->  ( ( ( A  -  O ) G ( B  -  O
) )  =/=  0  /\  ( ( B  -  O ) G ( C  -  O ) )  =/=  0  /\  ( ( C  -  O ) G ( A  -  O ) )  =/=  0 ) )
Assertion
Ref Expression
cevathlem2  |-  ( ph  ->  ( ( ( C  -  O ) G ( A  -  O
) )  x.  ( B  -  D )
)  =  ( ( ( A  -  O
) G ( B  -  O ) )  x.  ( D  -  C ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, D, y   
x, O, y    x, E, y    x, F, y
Allowed substitution hints:    ph( x, y)    G( x, y)

Proof of Theorem cevathlem2
StepHypRef Expression
1 cevath.sigar . . . . . . 7  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
2 cevath.b . . . . . . . . 9  |-  ( ph  ->  ( F  e.  CC  /\  D  e.  CC  /\  E  e.  CC )
)
32simp2d 1074 . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
4 cevath.a . . . . . . . . 9  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
54simp1d 1073 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
64simp2d 1074 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
73, 5, 63jca 1242 . . . . . . 7  |-  ( ph  ->  ( D  e.  CC  /\  A  e.  CC  /\  B  e.  CC )
)
8 cevath.c . . . . . . . 8  |-  ( ph  ->  O  e.  CC )
95, 8subcld 10392 . . . . . . . . . 10  |-  ( ph  ->  ( A  -  O
)  e.  CC )
103, 8subcld 10392 . . . . . . . . . 10  |-  ( ph  ->  ( D  -  O
)  e.  CC )
119, 10jca 554 . . . . . . . . 9  |-  ( ph  ->  ( ( A  -  O )  e.  CC  /\  ( D  -  O
)  e.  CC ) )
12 cevath.d . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  -  O ) G ( D  -  O
) )  =  0  /\  ( ( B  -  O ) G ( E  -  O
) )  =  0  /\  ( ( C  -  O ) G ( F  -  O
) )  =  0 ) )
1312simp1d 1073 . . . . . . . . 9  |-  ( ph  ->  ( ( A  -  O ) G ( D  -  O ) )  =  0 )
141, 11, 13sigariz 41052 . . . . . . . 8  |-  ( ph  ->  ( ( D  -  O ) G ( A  -  O ) )  =  0 )
158, 14jca 554 . . . . . . 7  |-  ( ph  ->  ( O  e.  CC  /\  ( ( D  -  O ) G ( A  -  O ) )  =  0 ) )
161, 7, 15sigaradd 41055 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  B ) G ( D  -  B
) )  -  (
( O  -  B
) G ( D  -  B ) ) )  =  ( ( A  -  B ) G ( O  -  B ) ) )
171sigarperm 41049 . . . . . . 7  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  O  e.  CC )  ->  (
( B  -  O
) G ( A  -  O ) )  =  ( ( A  -  B ) G ( O  -  B
) ) )
186, 5, 8, 17syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( B  -  O ) G ( A  -  O ) )  =  ( ( A  -  B ) G ( O  -  B ) ) )
1916, 18eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( ( ( A  -  B ) G ( D  -  B
) )  -  (
( O  -  B
) G ( D  -  B ) ) )  =  ( ( B  -  O ) G ( A  -  O ) ) )
2019oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( ( ( A  -  B ) G ( D  -  B ) )  -  ( ( O  -  B ) G ( D  -  B ) ) )  x.  ( C  -  D )
)  =  ( ( ( B  -  O
) G ( A  -  O ) )  x.  ( C  -  D ) ) )
215, 6subcld 10392 . . . . . . 7  |-  ( ph  ->  ( A  -  B
)  e.  CC )
223, 6subcld 10392 . . . . . . 7  |-  ( ph  ->  ( D  -  B
)  e.  CC )
2321, 22jca 554 . . . . . 6  |-  ( ph  ->  ( ( A  -  B )  e.  CC  /\  ( D  -  B
)  e.  CC ) )
241, 23sigarimcd 41051 . . . . 5  |-  ( ph  ->  ( ( A  -  B ) G ( D  -  B ) )  e.  CC )
258, 6subcld 10392 . . . . . . 7  |-  ( ph  ->  ( O  -  B
)  e.  CC )
2625, 22jca 554 . . . . . 6  |-  ( ph  ->  ( ( O  -  B )  e.  CC  /\  ( D  -  B
)  e.  CC ) )
271, 26sigarimcd 41051 . . . . 5  |-  ( ph  ->  ( ( O  -  B ) G ( D  -  B ) )  e.  CC )
284simp3d 1075 . . . . . 6  |-  ( ph  ->  C  e.  CC )
2928, 3subcld 10392 . . . . 5  |-  ( ph  ->  ( C  -  D
)  e.  CC )
3024, 27, 29subdird 10487 . . . 4  |-  ( ph  ->  ( ( ( ( A  -  B ) G ( D  -  B ) )  -  ( ( O  -  B ) G ( D  -  B ) ) )  x.  ( C  -  D )
)  =  ( ( ( ( A  -  B ) G ( D  -  B ) )  x.  ( C  -  D ) )  -  ( ( ( O  -  B ) G ( D  -  B ) )  x.  ( C  -  D
) ) ) )
3120, 30eqtr3d 2658 . . 3  |-  ( ph  ->  ( ( ( B  -  O ) G ( A  -  O
) )  x.  ( C  -  D )
)  =  ( ( ( ( A  -  B ) G ( D  -  B ) )  x.  ( C  -  D ) )  -  ( ( ( O  -  B ) G ( D  -  B ) )  x.  ( C  -  D
) ) ) )
326, 28, 53jca 1242 . . . . 5  |-  ( ph  ->  ( B  e.  CC  /\  C  e.  CC  /\  A  e.  CC )
)
33 cevath.e . . . . . . 7  |-  ( ph  ->  ( ( ( A  -  F ) G ( B  -  F
) )  =  0  /\  ( ( B  -  D ) G ( C  -  D
) )  =  0  /\  ( ( C  -  E ) G ( A  -  E
) )  =  0 ) )
3433simp2d 1074 . . . . . 6  |-  ( ph  ->  ( ( B  -  D ) G ( C  -  D ) )  =  0 )
353, 34jca 554 . . . . 5  |-  ( ph  ->  ( D  e.  CC  /\  ( ( B  -  D ) G ( C  -  D ) )  =  0 ) )
361, 32, 35sharhght 41054 . . . 4  |-  ( ph  ->  ( ( ( A  -  B ) G ( D  -  B
) )  x.  ( C  -  D )
)  =  ( ( ( A  -  C
) G ( D  -  C ) )  x.  ( B  -  D ) ) )
376, 28, 83jca 1242 . . . . 5  |-  ( ph  ->  ( B  e.  CC  /\  C  e.  CC  /\  O  e.  CC )
)
381, 37, 35sharhght 41054 . . . 4  |-  ( ph  ->  ( ( ( O  -  B ) G ( D  -  B
) )  x.  ( C  -  D )
)  =  ( ( ( O  -  C
) G ( D  -  C ) )  x.  ( B  -  D ) ) )
3936, 38oveq12d 6668 . . 3  |-  ( ph  ->  ( ( ( ( A  -  B ) G ( D  -  B ) )  x.  ( C  -  D
) )  -  (
( ( O  -  B ) G ( D  -  B ) )  x.  ( C  -  D ) ) )  =  ( ( ( ( A  -  C ) G ( D  -  C ) )  x.  ( B  -  D ) )  -  ( ( ( O  -  C ) G ( D  -  C ) )  x.  ( B  -  D
) ) ) )
405, 28subcld 10392 . . . . . . 7  |-  ( ph  ->  ( A  -  C
)  e.  CC )
413, 28subcld 10392 . . . . . . 7  |-  ( ph  ->  ( D  -  C
)  e.  CC )
421sigarim 41040 . . . . . . 7  |-  ( ( ( A  -  C
)  e.  CC  /\  ( D  -  C
)  e.  CC )  ->  ( ( A  -  C ) G ( D  -  C
) )  e.  RR )
4340, 41, 42syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( A  -  C ) G ( D  -  C ) )  e.  RR )
4443recnd 10068 . . . . 5  |-  ( ph  ->  ( ( A  -  C ) G ( D  -  C ) )  e.  CC )
458, 28subcld 10392 . . . . . . 7  |-  ( ph  ->  ( O  -  C
)  e.  CC )
4645, 41jca 554 . . . . . 6  |-  ( ph  ->  ( ( O  -  C )  e.  CC  /\  ( D  -  C
)  e.  CC ) )
471, 46sigarimcd 41051 . . . . 5  |-  ( ph  ->  ( ( O  -  C ) G ( D  -  C ) )  e.  CC )
486, 3subcld 10392 . . . . 5  |-  ( ph  ->  ( B  -  D
)  e.  CC )
4944, 47, 48subdird 10487 . . . 4  |-  ( ph  ->  ( ( ( ( A  -  C ) G ( D  -  C ) )  -  ( ( O  -  C ) G ( D  -  C ) ) )  x.  ( B  -  D )
)  =  ( ( ( ( A  -  C ) G ( D  -  C ) )  x.  ( B  -  D ) )  -  ( ( ( O  -  C ) G ( D  -  C ) )  x.  ( B  -  D
) ) ) )
503, 5, 283jca 1242 . . . . . . 7  |-  ( ph  ->  ( D  e.  CC  /\  A  e.  CC  /\  C  e.  CC )
)
511, 50, 15sigaradd 41055 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  C ) G ( D  -  C
) )  -  (
( O  -  C
) G ( D  -  C ) ) )  =  ( ( A  -  C ) G ( O  -  C ) ) )
521sigarperm 41049 . . . . . . 7  |-  ( ( C  e.  CC  /\  A  e.  CC  /\  O  e.  CC )  ->  (
( C  -  O
) G ( A  -  O ) )  =  ( ( A  -  C ) G ( O  -  C
) ) )
5328, 5, 8, 52syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( C  -  O ) G ( A  -  O ) )  =  ( ( A  -  C ) G ( O  -  C ) ) )
5451, 53eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( ( ( A  -  C ) G ( D  -  C
) )  -  (
( O  -  C
) G ( D  -  C ) ) )  =  ( ( C  -  O ) G ( A  -  O ) ) )
5554oveq1d 6665 . . . 4  |-  ( ph  ->  ( ( ( ( A  -  C ) G ( D  -  C ) )  -  ( ( O  -  C ) G ( D  -  C ) ) )  x.  ( B  -  D )
)  =  ( ( ( C  -  O
) G ( A  -  O ) )  x.  ( B  -  D ) ) )
5649, 55eqtr3d 2658 . . 3  |-  ( ph  ->  ( ( ( ( A  -  C ) G ( D  -  C ) )  x.  ( B  -  D
) )  -  (
( ( O  -  C ) G ( D  -  C ) )  x.  ( B  -  D ) ) )  =  ( ( ( C  -  O
) G ( A  -  O ) )  x.  ( B  -  D ) ) )
5731, 39, 563eqtrrd 2661 . 2  |-  ( ph  ->  ( ( ( C  -  O ) G ( A  -  O
) )  x.  ( B  -  D )
)  =  ( ( ( B  -  O
) G ( A  -  O ) )  x.  ( C  -  D ) ) )
586, 8subcld 10392 . . . 4  |-  ( ph  ->  ( B  -  O
)  e.  CC )
591sigarac 41041 . . . 4  |-  ( ( ( B  -  O
)  e.  CC  /\  ( A  -  O
)  e.  CC )  ->  ( ( B  -  O ) G ( A  -  O
) )  =  -u ( ( A  -  O ) G ( B  -  O ) ) )
6058, 9, 59syl2anc 693 . . 3  |-  ( ph  ->  ( ( B  -  O ) G ( A  -  O ) )  =  -u (
( A  -  O
) G ( B  -  O ) ) )
6160oveq1d 6665 . 2  |-  ( ph  ->  ( ( ( B  -  O ) G ( A  -  O
) )  x.  ( C  -  D )
)  =  ( -u ( ( A  -  O ) G ( B  -  O ) )  x.  ( C  -  D ) ) )
629, 58jca 554 . . . . 5  |-  ( ph  ->  ( ( A  -  O )  e.  CC  /\  ( B  -  O
)  e.  CC ) )
631, 62sigarimcd 41051 . . . 4  |-  ( ph  ->  ( ( A  -  O ) G ( B  -  O ) )  e.  CC )
64 mulneg12 10468 . . . 4  |-  ( ( ( ( A  -  O ) G ( B  -  O ) )  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( -u (
( A  -  O
) G ( B  -  O ) )  x.  ( C  -  D ) )  =  ( ( ( A  -  O ) G ( B  -  O
) )  x.  -u ( C  -  D )
) )
6563, 29, 64syl2anc 693 . . 3  |-  ( ph  ->  ( -u ( ( A  -  O ) G ( B  -  O ) )  x.  ( C  -  D
) )  =  ( ( ( A  -  O ) G ( B  -  O ) )  x.  -u ( C  -  D )
) )
6628, 3negsubdi2d 10408 . . . 4  |-  ( ph  -> 
-u ( C  -  D )  =  ( D  -  C ) )
6766oveq2d 6666 . . 3  |-  ( ph  ->  ( ( ( A  -  O ) G ( B  -  O
) )  x.  -u ( C  -  D )
)  =  ( ( ( A  -  O
) G ( B  -  O ) )  x.  ( D  -  C ) ) )
6865, 67eqtrd 2656 . 2  |-  ( ph  ->  ( -u ( ( A  -  O ) G ( B  -  O ) )  x.  ( C  -  D
) )  =  ( ( ( A  -  O ) G ( B  -  O ) )  x.  ( D  -  C ) ) )
6957, 61, 683eqtrd 2660 1  |-  ( ph  ->  ( ( ( C  -  O ) G ( A  -  O
) )  x.  ( B  -  D )
)  =  ( ( ( A  -  O
) G ( B  -  O ) )  x.  ( D  -  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   RRcr 9935   0cc0 9936    x. cmul 9941    - cmin 10266   -ucneg 10267   *ccj 13836   Imcim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  cevath  41058
  Copyright terms: Public domain W3C validator