| Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cevathlem2 | Structured version Visualization version Unicode version | ||
| Description: Ceva's theorem second
lemma. Relate (doubled) areas of triangles
|
| Ref | Expression |
|---|---|
| cevath.sigar |
|
| cevath.a |
|
| cevath.b |
|
| cevath.c |
|
| cevath.d |
|
| cevath.e |
|
| cevath.f |
|
| Ref | Expression |
|---|---|
| cevathlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cevath.sigar |
. . . . . . 7
| |
| 2 | cevath.b |
. . . . . . . . 9
| |
| 3 | 2 | simp2d 1074 |
. . . . . . . 8
|
| 4 | cevath.a |
. . . . . . . . 9
| |
| 5 | 4 | simp1d 1073 |
. . . . . . . 8
|
| 6 | 4 | simp2d 1074 |
. . . . . . . 8
|
| 7 | 3, 5, 6 | 3jca 1242 |
. . . . . . 7
|
| 8 | cevath.c |
. . . . . . . 8
| |
| 9 | 5, 8 | subcld 10392 |
. . . . . . . . . 10
|
| 10 | 3, 8 | subcld 10392 |
. . . . . . . . . 10
|
| 11 | 9, 10 | jca 554 |
. . . . . . . . 9
|
| 12 | cevath.d |
. . . . . . . . . 10
| |
| 13 | 12 | simp1d 1073 |
. . . . . . . . 9
|
| 14 | 1, 11, 13 | sigariz 41052 |
. . . . . . . 8
|
| 15 | 8, 14 | jca 554 |
. . . . . . 7
|
| 16 | 1, 7, 15 | sigaradd 41055 |
. . . . . 6
|
| 17 | 1 | sigarperm 41049 |
. . . . . . 7
|
| 18 | 6, 5, 8, 17 | syl3anc 1326 |
. . . . . 6
|
| 19 | 16, 18 | eqtr4d 2659 |
. . . . 5
|
| 20 | 19 | oveq1d 6665 |
. . . 4
|
| 21 | 5, 6 | subcld 10392 |
. . . . . . 7
|
| 22 | 3, 6 | subcld 10392 |
. . . . . . 7
|
| 23 | 21, 22 | jca 554 |
. . . . . 6
|
| 24 | 1, 23 | sigarimcd 41051 |
. . . . 5
|
| 25 | 8, 6 | subcld 10392 |
. . . . . . 7
|
| 26 | 25, 22 | jca 554 |
. . . . . 6
|
| 27 | 1, 26 | sigarimcd 41051 |
. . . . 5
|
| 28 | 4 | simp3d 1075 |
. . . . . 6
|
| 29 | 28, 3 | subcld 10392 |
. . . . 5
|
| 30 | 24, 27, 29 | subdird 10487 |
. . . 4
|
| 31 | 20, 30 | eqtr3d 2658 |
. . 3
|
| 32 | 6, 28, 5 | 3jca 1242 |
. . . . 5
|
| 33 | cevath.e |
. . . . . . 7
| |
| 34 | 33 | simp2d 1074 |
. . . . . 6
|
| 35 | 3, 34 | jca 554 |
. . . . 5
|
| 36 | 1, 32, 35 | sharhght 41054 |
. . . 4
|
| 37 | 6, 28, 8 | 3jca 1242 |
. . . . 5
|
| 38 | 1, 37, 35 | sharhght 41054 |
. . . 4
|
| 39 | 36, 38 | oveq12d 6668 |
. . 3
|
| 40 | 5, 28 | subcld 10392 |
. . . . . . 7
|
| 41 | 3, 28 | subcld 10392 |
. . . . . . 7
|
| 42 | 1 | sigarim 41040 |
. . . . . . 7
|
| 43 | 40, 41, 42 | syl2anc 693 |
. . . . . 6
|
| 44 | 43 | recnd 10068 |
. . . . 5
|
| 45 | 8, 28 | subcld 10392 |
. . . . . . 7
|
| 46 | 45, 41 | jca 554 |
. . . . . 6
|
| 47 | 1, 46 | sigarimcd 41051 |
. . . . 5
|
| 48 | 6, 3 | subcld 10392 |
. . . . 5
|
| 49 | 44, 47, 48 | subdird 10487 |
. . . 4
|
| 50 | 3, 5, 28 | 3jca 1242 |
. . . . . . 7
|
| 51 | 1, 50, 15 | sigaradd 41055 |
. . . . . 6
|
| 52 | 1 | sigarperm 41049 |
. . . . . . 7
|
| 53 | 28, 5, 8, 52 | syl3anc 1326 |
. . . . . 6
|
| 54 | 51, 53 | eqtr4d 2659 |
. . . . 5
|
| 55 | 54 | oveq1d 6665 |
. . . 4
|
| 56 | 49, 55 | eqtr3d 2658 |
. . 3
|
| 57 | 31, 39, 56 | 3eqtrrd 2661 |
. 2
|
| 58 | 6, 8 | subcld 10392 |
. . . 4
|
| 59 | 1 | sigarac 41041 |
. . . 4
|
| 60 | 58, 9, 59 | syl2anc 693 |
. . 3
|
| 61 | 60 | oveq1d 6665 |
. 2
|
| 62 | 9, 58 | jca 554 |
. . . . 5
|
| 63 | 1, 62 | sigarimcd 41051 |
. . . 4
|
| 64 | mulneg12 10468 |
. . . 4
| |
| 65 | 63, 29, 64 | syl2anc 693 |
. . 3
|
| 66 | 28, 3 | negsubdi2d 10408 |
. . . 4
|
| 67 | 66 | oveq2d 6666 |
. . 3
|
| 68 | 65, 67 | eqtrd 2656 |
. 2
|
| 69 | 57, 61, 68 | 3eqtrd 2660 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-cj 13839 df-re 13840 df-im 13841 |
| This theorem is referenced by: cevath 41058 |
| Copyright terms: Public domain | W3C validator |