Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaradd Structured version   Visualization version   Unicode version

Theorem sigaradd 41055
Description: Subtracting (double) area of  A D C from  A B C yields the (double) area of  D B C. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
sharhght.a  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
sharhght.b  |-  ( ph  ->  ( D  e.  CC  /\  ( ( A  -  D ) G ( B  -  D ) )  =  0 ) )
Assertion
Ref Expression
sigaradd  |-  ( ph  ->  ( ( ( B  -  C ) G ( A  -  C
) )  -  (
( D  -  C
) G ( A  -  C ) ) )  =  ( ( B  -  C ) G ( D  -  C ) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, D, y
Allowed substitution hints:    ph( x, y)    G( x, y)

Proof of Theorem sigaradd
StepHypRef Expression
1 sharhght.a . . . . . . . 8  |-  ( ph  ->  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
)
21simp1d 1073 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
31simp3d 1075 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
4 sharhght.b . . . . . . . 8  |-  ( ph  ->  ( D  e.  CC  /\  ( ( A  -  D ) G ( B  -  D ) )  =  0 ) )
54simpld 475 . . . . . . 7  |-  ( ph  ->  D  e.  CC )
62, 3, 5nnncan1d 10426 . . . . . 6  |-  ( ph  ->  ( ( A  -  C )  -  ( A  -  D )
)  =  ( D  -  C ) )
76oveq2d 6666 . . . . 5  |-  ( ph  ->  ( ( B  -  D ) G ( ( A  -  C
)  -  ( A  -  D ) ) )  =  ( ( B  -  D ) G ( D  -  C ) ) )
81simp2d 1074 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
98, 5subcld 10392 . . . . . 6  |-  ( ph  ->  ( B  -  D
)  e.  CC )
102, 3subcld 10392 . . . . . 6  |-  ( ph  ->  ( A  -  C
)  e.  CC )
112, 5subcld 10392 . . . . . 6  |-  ( ph  ->  ( A  -  D
)  e.  CC )
12 sharhght.sigar . . . . . . 7  |-  G  =  ( x  e.  CC ,  y  e.  CC  |->  ( Im `  ( ( * `  x )  x.  y ) ) )
1312sigarms 41045 . . . . . 6  |-  ( ( ( B  -  D
)  e.  CC  /\  ( A  -  C
)  e.  CC  /\  ( A  -  D
)  e.  CC )  ->  ( ( B  -  D ) G ( ( A  -  C )  -  ( A  -  D )
) )  =  ( ( ( B  -  D ) G ( A  -  C ) )  -  ( ( B  -  D ) G ( A  -  D ) ) ) )
149, 10, 11, 13syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( B  -  D ) G ( ( A  -  C
)  -  ( A  -  D ) ) )  =  ( ( ( B  -  D
) G ( A  -  C ) )  -  ( ( B  -  D ) G ( A  -  D
) ) ) )
157, 14eqtr3d 2658 . . . 4  |-  ( ph  ->  ( ( B  -  D ) G ( D  -  C ) )  =  ( ( ( B  -  D
) G ( A  -  C ) )  -  ( ( B  -  D ) G ( A  -  D
) ) ) )
1612sigarac 41041 . . . . . . . . 9  |-  ( ( ( A  -  D
)  e.  CC  /\  ( B  -  D
)  e.  CC )  ->  ( ( A  -  D ) G ( B  -  D
) )  =  -u ( ( B  -  D ) G ( A  -  D ) ) )
1711, 9, 16syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( A  -  D ) G ( B  -  D ) )  =  -u (
( B  -  D
) G ( A  -  D ) ) )
184simprd 479 . . . . . . . 8  |-  ( ph  ->  ( ( A  -  D ) G ( B  -  D ) )  =  0 )
1917, 18eqtr3d 2658 . . . . . . 7  |-  ( ph  -> 
-u ( ( B  -  D ) G ( A  -  D
) )  =  0 )
2019negeqd 10275 . . . . . 6  |-  ( ph  -> 
-u -u ( ( B  -  D ) G ( A  -  D
) )  =  -u
0 )
219, 11jca 554 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  D )  e.  CC  /\  ( A  -  D
)  e.  CC ) )
2212, 21sigarimcd 41051 . . . . . . 7  |-  ( ph  ->  ( ( B  -  D ) G ( A  -  D ) )  e.  CC )
2322negnegd 10383 . . . . . 6  |-  ( ph  -> 
-u -u ( ( B  -  D ) G ( A  -  D
) )  =  ( ( B  -  D
) G ( A  -  D ) ) )
24 neg0 10327 . . . . . . 7  |-  -u 0  =  0
2524a1i 11 . . . . . 6  |-  ( ph  -> 
-u 0  =  0 )
2620, 23, 253eqtr3d 2664 . . . . 5  |-  ( ph  ->  ( ( B  -  D ) G ( A  -  D ) )  =  0 )
2726oveq2d 6666 . . . 4  |-  ( ph  ->  ( ( ( B  -  D ) G ( A  -  C
) )  -  (
( B  -  D
) G ( A  -  D ) ) )  =  ( ( ( B  -  D
) G ( A  -  C ) )  -  0 ) )
289, 10jca 554 . . . . . 6  |-  ( ph  ->  ( ( B  -  D )  e.  CC  /\  ( A  -  C
)  e.  CC ) )
2912, 28sigarimcd 41051 . . . . 5  |-  ( ph  ->  ( ( B  -  D ) G ( A  -  C ) )  e.  CC )
3029subid1d 10381 . . . 4  |-  ( ph  ->  ( ( ( B  -  D ) G ( A  -  C
) )  -  0 )  =  ( ( B  -  D ) G ( A  -  C ) ) )
3115, 27, 303eqtrd 2660 . . 3  |-  ( ph  ->  ( ( B  -  D ) G ( D  -  C ) )  =  ( ( B  -  D ) G ( A  -  C ) ) )
328, 5, 3nnncan2d 10427 . . . 4  |-  ( ph  ->  ( ( B  -  C )  -  ( D  -  C )
)  =  ( B  -  D ) )
3332oveq1d 6665 . . 3  |-  ( ph  ->  ( ( ( B  -  C )  -  ( D  -  C
) ) G ( A  -  C ) )  =  ( ( B  -  D ) G ( A  -  C ) ) )
348, 3subcld 10392 . . . 4  |-  ( ph  ->  ( B  -  C
)  e.  CC )
355, 3subcld 10392 . . . 4  |-  ( ph  ->  ( D  -  C
)  e.  CC )
3612sigarmf 41043 . . . 4  |-  ( ( ( B  -  C
)  e.  CC  /\  ( A  -  C
)  e.  CC  /\  ( D  -  C
)  e.  CC )  ->  ( ( ( B  -  C )  -  ( D  -  C ) ) G ( A  -  C
) )  =  ( ( ( B  -  C ) G ( A  -  C ) )  -  ( ( D  -  C ) G ( A  -  C ) ) ) )
3734, 10, 35, 36syl3anc 1326 . . 3  |-  ( ph  ->  ( ( ( B  -  C )  -  ( D  -  C
) ) G ( A  -  C ) )  =  ( ( ( B  -  C
) G ( A  -  C ) )  -  ( ( D  -  C ) G ( A  -  C
) ) ) )
3831, 33, 373eqtr2rd 2663 . 2  |-  ( ph  ->  ( ( ( B  -  C ) G ( A  -  C
) )  -  (
( D  -  C
) G ( A  -  C ) ) )  =  ( ( B  -  D ) G ( D  -  C ) ) )
393, 5subcld 10392 . . . 4  |-  ( ph  ->  ( C  -  D
)  e.  CC )
40 1red 10055 . . . . 5  |-  ( ph  ->  1  e.  RR )
4140renegcld 10457 . . . 4  |-  ( ph  -> 
-u 1  e.  RR )
4212sigarls 41046 . . . 4  |-  ( ( ( B  -  D
)  e.  CC  /\  ( C  -  D
)  e.  CC  /\  -u 1  e.  RR )  ->  ( ( B  -  D ) G ( ( C  -  D )  x.  -u 1
) )  =  ( ( ( B  -  D ) G ( C  -  D ) )  x.  -u 1
) )
439, 39, 41, 42syl3anc 1326 . . 3  |-  ( ph  ->  ( ( B  -  D ) G ( ( C  -  D
)  x.  -u 1
) )  =  ( ( ( B  -  D ) G ( C  -  D ) )  x.  -u 1
) )
4439mulm1d 10482 . . . . 5  |-  ( ph  ->  ( -u 1  x.  ( C  -  D
) )  =  -u ( C  -  D
) )
45 1cnd 10056 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
4645negcld 10379 . . . . . 6  |-  ( ph  -> 
-u 1  e.  CC )
4746, 39mulcomd 10061 . . . . 5  |-  ( ph  ->  ( -u 1  x.  ( C  -  D
) )  =  ( ( C  -  D
)  x.  -u 1
) )
483, 5negsubdi2d 10408 . . . . 5  |-  ( ph  -> 
-u ( C  -  D )  =  ( D  -  C ) )
4944, 47, 483eqtr3d 2664 . . . 4  |-  ( ph  ->  ( ( C  -  D )  x.  -u 1
)  =  ( D  -  C ) )
5049oveq2d 6666 . . 3  |-  ( ph  ->  ( ( B  -  D ) G ( ( C  -  D
)  x.  -u 1
) )  =  ( ( B  -  D
) G ( D  -  C ) ) )
519, 39jca 554 . . . . . 6  |-  ( ph  ->  ( ( B  -  D )  e.  CC  /\  ( C  -  D
)  e.  CC ) )
5212, 51sigarimcd 41051 . . . . 5  |-  ( ph  ->  ( ( B  -  D ) G ( C  -  D ) )  e.  CC )
5352mulm1d 10482 . . . 4  |-  ( ph  ->  ( -u 1  x.  ( ( B  -  D ) G ( C  -  D ) ) )  =  -u ( ( B  -  D ) G ( C  -  D ) ) )
5452, 46mulcomd 10061 . . . 4  |-  ( ph  ->  ( ( ( B  -  D ) G ( C  -  D
) )  x.  -u 1
)  =  ( -u
1  x.  ( ( B  -  D ) G ( C  -  D ) ) ) )
5512sigarac 41041 . . . . 5  |-  ( ( ( C  -  D
)  e.  CC  /\  ( B  -  D
)  e.  CC )  ->  ( ( C  -  D ) G ( B  -  D
) )  =  -u ( ( B  -  D ) G ( C  -  D ) ) )
5639, 9, 55syl2anc 693 . . . 4  |-  ( ph  ->  ( ( C  -  D ) G ( B  -  D ) )  =  -u (
( B  -  D
) G ( C  -  D ) ) )
5753, 54, 563eqtr4d 2666 . . 3  |-  ( ph  ->  ( ( ( B  -  D ) G ( C  -  D
) )  x.  -u 1
)  =  ( ( C  -  D ) G ( B  -  D ) ) )
5843, 50, 573eqtr3d 2664 . 2  |-  ( ph  ->  ( ( B  -  D ) G ( D  -  C ) )  =  ( ( C  -  D ) G ( B  -  D ) ) )
5912sigarperm 41049 . . 3  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  (
( C  -  D
) G ( B  -  D ) )  =  ( ( B  -  C ) G ( D  -  C
) ) )
603, 8, 5, 59syl3anc 1326 . 2  |-  ( ph  ->  ( ( C  -  D ) G ( B  -  D ) )  =  ( ( B  -  C ) G ( D  -  C ) ) )
6138, 58, 603eqtrd 2660 1  |-  ( ph  ->  ( ( ( B  -  C ) G ( A  -  C
) )  -  (
( D  -  C
) G ( A  -  C ) ) )  =  ( ( B  -  C ) G ( D  -  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    - cmin 10266   -ucneg 10267   *ccj 13836   Imcim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  cevathlem2  41057
  Copyright terms: Public domain W3C validator