| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cflecard | Structured version Visualization version Unicode version | ||
| Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| cflecard |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfval 9069 |
. . 3
| |
| 2 | df-sn 4178 |
. . . . . 6
| |
| 3 | ssid 3624 |
. . . . . . . . 9
| |
| 4 | ssid 3624 |
. . . . . . . . . . 11
| |
| 5 | sseq2 3627 |
. . . . . . . . . . . 12
| |
| 6 | 5 | rspcev 3309 |
. . . . . . . . . . 11
|
| 7 | 4, 6 | mpan2 707 |
. . . . . . . . . 10
|
| 8 | 7 | rgen 2922 |
. . . . . . . . 9
|
| 9 | 3, 8 | pm3.2i 471 |
. . . . . . . 8
|
| 10 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 11 | 10 | eqeq2d 2632 |
. . . . . . . . . 10
|
| 12 | sseq1 3626 |
. . . . . . . . . . 11
| |
| 13 | rexeq 3139 |
. . . . . . . . . . . 12
| |
| 14 | 13 | ralbidv 2986 |
. . . . . . . . . . 11
|
| 15 | 12, 14 | anbi12d 747 |
. . . . . . . . . 10
|
| 16 | 11, 15 | anbi12d 747 |
. . . . . . . . 9
|
| 17 | 16 | spcegv 3294 |
. . . . . . . 8
|
| 18 | 9, 17 | mpan2i 713 |
. . . . . . 7
|
| 19 | 18 | ss2abdv 3675 |
. . . . . 6
|
| 20 | 2, 19 | syl5eqss 3649 |
. . . . 5
|
| 21 | intss 4498 |
. . . . 5
| |
| 22 | 20, 21 | syl 17 |
. . . 4
|
| 23 | fvex 6201 |
. . . . 5
| |
| 24 | 23 | intsn 4513 |
. . . 4
|
| 25 | 22, 24 | syl6sseq 3651 |
. . 3
|
| 26 | 1, 25 | eqsstrd 3639 |
. 2
|
| 27 | cff 9070 |
. . . . . 6
| |
| 28 | 27 | fdmi 6052 |
. . . . 5
|
| 29 | 28 | eleq2i 2693 |
. . . 4
|
| 30 | ndmfv 6218 |
. . . 4
| |
| 31 | 29, 30 | sylnbir 321 |
. . 3
|
| 32 | 0ss 3972 |
. . 3
| |
| 33 | 31, 32 | syl6eqss 3655 |
. 2
|
| 34 | 26, 33 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-card 8765 df-cf 8767 |
| This theorem is referenced by: cfle 9076 |
| Copyright terms: Public domain | W3C validator |