MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflecard Structured version   Visualization version   Unicode version

Theorem cflecard 9075
Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cflecard  |-  ( cf `  A )  C_  ( card `  A )

Proof of Theorem cflecard
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 9069 . . 3  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
2 df-sn 4178 . . . . . 6  |-  { (
card `  A ) }  =  { x  |  x  =  ( card `  A ) }
3 ssid 3624 . . . . . . . . 9  |-  A  C_  A
4 ssid 3624 . . . . . . . . . . 11  |-  z  C_  z
5 sseq2 3627 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
z  C_  w  <->  z  C_  z ) )
65rspcev 3309 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  z  C_  z )  ->  E. w  e.  A  z  C_  w )
74, 6mpan2 707 . . . . . . . . . 10  |-  ( z  e.  A  ->  E. w  e.  A  z  C_  w )
87rgen 2922 . . . . . . . . 9  |-  A. z  e.  A  E. w  e.  A  z  C_  w
93, 8pm3.2i 471 . . . . . . . 8  |-  ( A 
C_  A  /\  A. z  e.  A  E. w  e.  A  z  C_  w )
10 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( card `  y )  =  ( card `  A
) )
1110eqeq2d 2632 . . . . . . . . . 10  |-  ( y  =  A  ->  (
x  =  ( card `  y )  <->  x  =  ( card `  A )
) )
12 sseq1 3626 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
y  C_  A  <->  A  C_  A
) )
13 rexeq 3139 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( E. w  e.  y 
z  C_  w  <->  E. w  e.  A  z  C_  w ) )
1413ralbidv 2986 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( A. z  e.  A  E. w  e.  y 
z  C_  w  <->  A. z  e.  A  E. w  e.  A  z  C_  w ) )
1512, 14anbi12d 747 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )  <->  ( A  C_  A  /\  A. z  e.  A  E. w  e.  A  z  C_  w ) ) )
1611, 15anbi12d 747 . . . . . . . . 9  |-  ( y  =  A  ->  (
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
)  <->  ( x  =  ( card `  A
)  /\  ( A  C_  A  /\  A. z  e.  A  E. w  e.  A  z  C_  w ) ) ) )
1716spcegv 3294 . . . . . . . 8  |-  ( A  e.  On  ->  (
( x  =  (
card `  A )  /\  ( A  C_  A  /\  A. z  e.  A  E. w  e.  A  z  C_  w ) )  ->  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) ) )
189, 17mpan2i 713 . . . . . . 7  |-  ( A  e.  On  ->  (
x  =  ( card `  A )  ->  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) ) )
1918ss2abdv 3675 . . . . . 6  |-  ( A  e.  On  ->  { x  |  x  =  ( card `  A ) } 
C_  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
202, 19syl5eqss 3649 . . . . 5  |-  ( A  e.  On  ->  { (
card `  A ) }  C_  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
21 intss 4498 . . . . 5  |-  ( { ( card `  A
) }  C_  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  |^| { ( card `  A ) } )
2220, 21syl 17 . . . 4  |-  ( A  e.  On  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  |^| { ( card `  A ) } )
23 fvex 6201 . . . . 5  |-  ( card `  A )  e.  _V
2423intsn 4513 . . . 4  |-  |^| { (
card `  A ) }  =  ( card `  A )
2522, 24syl6sseq 3651 . . 3  |-  ( A  e.  On  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  ( card `  A
) )
261, 25eqsstrd 3639 . 2  |-  ( A  e.  On  ->  ( cf `  A )  C_  ( card `  A )
)
27 cff 9070 . . . . . 6  |-  cf : On
--> On
2827fdmi 6052 . . . . 5  |-  dom  cf  =  On
2928eleq2i 2693 . . . 4  |-  ( A  e.  dom  cf  <->  A  e.  On )
30 ndmfv 6218 . . . 4  |-  ( -.  A  e.  dom  cf  ->  ( cf `  A
)  =  (/) )
3129, 30sylnbir 321 . . 3  |-  ( -.  A  e.  On  ->  ( cf `  A )  =  (/) )
32 0ss 3972 . . 3  |-  (/)  C_  ( card `  A )
3331, 32syl6eqss 3655 . 2  |-  ( -.  A  e.  On  ->  ( cf `  A ) 
C_  ( card `  A
) )
3426, 33pm2.61i 176 1  |-  ( cf `  A )  C_  ( card `  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   {csn 4177   |^|cint 4475   dom cdm 5114   Oncon0 5723   ` cfv 5888   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-card 8765  df-cf 8767
This theorem is referenced by:  cfle  9076
  Copyright terms: Public domain W3C validator