| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cflim3 | Structured version Visualization version Unicode version | ||
| Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.) |
| Ref | Expression |
|---|---|
| cflim3.1 |
|
| Ref | Expression |
|---|---|
| cflim3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 5784 |
. . . 4
| |
| 2 | cflim3.1 |
. . . . 5
| |
| 3 | 2 | elon 5732 |
. . . 4
|
| 4 | 1, 3 | sylibr 224 |
. . 3
|
| 5 | cfval 9069 |
. . 3
| |
| 6 | 4, 5 | syl 17 |
. 2
|
| 7 | fvex 6201 |
. . . 4
| |
| 8 | 7 | dfiin2 4555 |
. . 3
|
| 9 | df-rex 2918 |
. . . . . 6
| |
| 10 | ancom 466 |
. . . . . . . 8
| |
| 11 | rabid 3116 |
. . . . . . . . . 10
| |
| 12 | selpw 4165 |
. . . . . . . . . . . 12
| |
| 13 | 12 | anbi1i 731 |
. . . . . . . . . . 11
|
| 14 | coflim 9083 |
. . . . . . . . . . . 12
| |
| 15 | 14 | pm5.32da 673 |
. . . . . . . . . . 11
|
| 16 | 13, 15 | syl5bb 272 |
. . . . . . . . . 10
|
| 17 | 11, 16 | syl5bb 272 |
. . . . . . . . 9
|
| 18 | 17 | anbi2d 740 |
. . . . . . . 8
|
| 19 | 10, 18 | syl5bb 272 |
. . . . . . 7
|
| 20 | 19 | exbidv 1850 |
. . . . . 6
|
| 21 | 9, 20 | syl5bb 272 |
. . . . 5
|
| 22 | 21 | abbidv 2741 |
. . . 4
|
| 23 | 22 | inteqd 4480 |
. . 3
|
| 24 | 8, 23 | syl5req 2669 |
. 2
|
| 25 | 6, 24 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-ord 5726 df-on 5727 df-lim 5728 df-iota 5851 df-fun 5890 df-fv 5896 df-cf 8767 |
| This theorem is referenced by: cflim2 9085 cfss 9087 cfslb 9088 |
| Copyright terms: Public domain | W3C validator |