MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflim3 Structured version   Visualization version   Unicode version

Theorem cflim3 9084
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
cflim3.1  |-  A  e. 
_V
Assertion
Ref Expression
cflim3  |-  ( Lim 
A  ->  ( cf `  A )  =  |^|_ x  e.  { x  e. 
~P A  |  U. x  =  A } 
( card `  x )
)
Distinct variable group:    x, A

Proof of Theorem cflim3
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 5784 . . . 4  |-  ( Lim 
A  ->  Ord  A )
2 cflim3.1 . . . . 5  |-  A  e. 
_V
32elon 5732 . . . 4  |-  ( A  e.  On  <->  Ord  A )
41, 3sylibr 224 . . 3  |-  ( Lim 
A  ->  A  e.  On )
5 cfval 9069 . . 3  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { y  |  E. x ( y  =  ( card `  x
)  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) } )
64, 5syl 17 . 2  |-  ( Lim 
A  ->  ( cf `  A )  =  |^| { y  |  E. x
( y  =  (
card `  x )  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) } )
7 fvex 6201 . . . 4  |-  ( card `  x )  e.  _V
87dfiin2 4555 . . 3  |-  |^|_ x  e.  { x  e.  ~P A  |  U. x  =  A }  ( card `  x )  =  |^| { y  |  E. x  e.  { x  e.  ~P A  |  U. x  =  A } y  =  ( card `  x
) }
9 df-rex 2918 . . . . . 6  |-  ( E. x  e.  { x  e.  ~P A  |  U. x  =  A }
y  =  ( card `  x )  <->  E. x
( x  e.  {
x  e.  ~P A  |  U. x  =  A }  /\  y  =  ( card `  x
) ) )
10 ancom 466 . . . . . . . 8  |-  ( ( x  e.  { x  e.  ~P A  |  U. x  =  A }  /\  y  =  ( card `  x ) )  <-> 
( y  =  (
card `  x )  /\  x  e.  { x  e.  ~P A  |  U. x  =  A }
) )
11 rabid 3116 . . . . . . . . . 10  |-  ( x  e.  { x  e. 
~P A  |  U. x  =  A }  <->  ( x  e.  ~P A  /\  U. x  =  A ) )
12 selpw 4165 . . . . . . . . . . . 12  |-  ( x  e.  ~P A  <->  x  C_  A
)
1312anbi1i 731 . . . . . . . . . . 11  |-  ( ( x  e.  ~P A  /\  U. x  =  A )  <->  ( x  C_  A  /\  U. x  =  A ) )
14 coflim 9083 . . . . . . . . . . . 12  |-  ( ( Lim  A  /\  x  C_  A )  ->  ( U. x  =  A  <->  A. z  e.  A  E. w  e.  x  z  C_  w ) )
1514pm5.32da 673 . . . . . . . . . . 11  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  U. x  =  A )  <-> 
( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) )
1613, 15syl5bb 272 . . . . . . . . . 10  |-  ( Lim 
A  ->  ( (
x  e.  ~P A  /\  U. x  =  A )  <->  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w
) ) )
1711, 16syl5bb 272 . . . . . . . . 9  |-  ( Lim 
A  ->  ( x  e.  { x  e.  ~P A  |  U. x  =  A }  <->  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) )
1817anbi2d 740 . . . . . . . 8  |-  ( Lim 
A  ->  ( (
y  =  ( card `  x )  /\  x  e.  { x  e.  ~P A  |  U. x  =  A } )  <->  ( y  =  ( card `  x
)  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) ) )
1910, 18syl5bb 272 . . . . . . 7  |-  ( Lim 
A  ->  ( (
x  e.  { x  e.  ~P A  |  U. x  =  A }  /\  y  =  ( card `  x ) )  <-> 
( y  =  (
card `  x )  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) ) )
2019exbidv 1850 . . . . . 6  |-  ( Lim 
A  ->  ( E. x ( x  e. 
{ x  e.  ~P A  |  U. x  =  A }  /\  y  =  ( card `  x
) )  <->  E. x
( y  =  (
card `  x )  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) ) )
219, 20syl5bb 272 . . . . 5  |-  ( Lim 
A  ->  ( E. x  e.  { x  e.  ~P A  |  U. x  =  A }
y  =  ( card `  x )  <->  E. x
( y  =  (
card `  x )  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) ) )
2221abbidv 2741 . . . 4  |-  ( Lim 
A  ->  { y  |  E. x  e.  {
x  e.  ~P A  |  U. x  =  A } y  =  (
card `  x ) }  =  { y  |  E. x ( y  =  ( card `  x
)  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) } )
2322inteqd 4480 . . 3  |-  ( Lim 
A  ->  |^| { y  |  E. x  e. 
{ x  e.  ~P A  |  U. x  =  A } y  =  ( card `  x
) }  =  |^| { y  |  E. x
( y  =  (
card `  x )  /\  ( x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) } )
248, 23syl5req 2669 . 2  |-  ( Lim 
A  ->  |^| { y  |  E. x ( y  =  ( card `  x )  /\  (
x  C_  A  /\  A. z  e.  A  E. w  e.  x  z  C_  w ) ) }  =  |^|_ x  e.  {
x  e.  ~P A  |  U. x  =  A }  ( card `  x
) )
256, 24eqtrd 2656 1  |-  ( Lim 
A  ->  ( cf `  A )  =  |^|_ x  e.  { x  e. 
~P A  |  U. x  =  A } 
( card `  x )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   |^|_ciin 4521   Ord word 5722   Oncon0 5723   Lim wlim 5724   ` cfv 5888   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-lim 5728  df-iota 5851  df-fun 5890  df-fv 5896  df-cf 8767
This theorem is referenced by:  cflim2  9085  cfss  9087  cfslb  9088
  Copyright terms: Public domain W3C validator