MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb Structured version   Visualization version   Unicode version

Theorem cfslb 9088
Description: Any cofinal subset of  A is at least as large as  ( cf `  A ). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1  |-  A  e. 
_V
Assertion
Ref Expression
cfslb  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  ( cf `  A )  ~<_  B )

Proof of Theorem cfslb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . 3  |-  ( card `  B )  e.  _V
2 ssid 3624 . . . . . . 7  |-  ( card `  B )  C_  ( card `  B )
3 cfslb.1 . . . . . . . . . . 11  |-  A  e. 
_V
43ssex 4802 . . . . . . . . . 10  |-  ( B 
C_  A  ->  B  e.  _V )
54ad2antrr 762 . . . . . . . . 9  |-  ( ( ( B  C_  A  /\  U. B  =  A )  /\  ( card `  B )  C_  ( card `  B ) )  ->  B  e.  _V )
6 selpw 4165 . . . . . . . . . . . . 13  |-  ( x  e.  ~P A  <->  x  C_  A
)
7 sseq1 3626 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  (
x  C_  A  <->  B  C_  A
) )
86, 7syl5bb 272 . . . . . . . . . . . 12  |-  ( x  =  B  ->  (
x  e.  ~P A  <->  B 
C_  A ) )
9 unieq 4444 . . . . . . . . . . . . 13  |-  ( x  =  B  ->  U. x  =  U. B )
109eqeq1d 2624 . . . . . . . . . . . 12  |-  ( x  =  B  ->  ( U. x  =  A  <->  U. B  =  A ) )
118, 10anbi12d 747 . . . . . . . . . . 11  |-  ( x  =  B  ->  (
( x  e.  ~P A  /\  U. x  =  A )  <->  ( B  C_  A  /\  U. B  =  A ) ) )
12 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  B  ->  ( card `  x )  =  ( card `  B
) )
1312sseq1d 3632 . . . . . . . . . . 11  |-  ( x  =  B  ->  (
( card `  x )  C_  ( card `  B
)  <->  ( card `  B
)  C_  ( card `  B ) ) )
1411, 13anbi12d 747 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( ( x  e. 
~P A  /\  U. x  =  A )  /\  ( card `  x
)  C_  ( card `  B ) )  <->  ( ( B  C_  A  /\  U. B  =  A )  /\  ( card `  B
)  C_  ( card `  B ) ) ) )
1514spcegv 3294 . . . . . . . . 9  |-  ( B  e.  _V  ->  (
( ( B  C_  A  /\  U. B  =  A )  /\  ( card `  B )  C_  ( card `  B )
)  ->  E. x
( ( x  e. 
~P A  /\  U. x  =  A )  /\  ( card `  x
)  C_  ( card `  B ) ) ) )
165, 15mpcom 38 . . . . . . . 8  |-  ( ( ( B  C_  A  /\  U. B  =  A )  /\  ( card `  B )  C_  ( card `  B ) )  ->  E. x ( ( x  e.  ~P A  /\  U. x  =  A )  /\  ( card `  x )  C_  ( card `  B ) ) )
17 df-rex 2918 . . . . . . . . 9  |-  ( E. x  e.  { x  e.  ~P A  |  U. x  =  A } 
( card `  x )  C_  ( card `  B
)  <->  E. x ( x  e.  { x  e. 
~P A  |  U. x  =  A }  /\  ( card `  x
)  C_  ( card `  B ) ) )
18 rabid 3116 . . . . . . . . . . 11  |-  ( x  e.  { x  e. 
~P A  |  U. x  =  A }  <->  ( x  e.  ~P A  /\  U. x  =  A ) )
1918anbi1i 731 . . . . . . . . . 10  |-  ( ( x  e.  { x  e.  ~P A  |  U. x  =  A }  /\  ( card `  x
)  C_  ( card `  B ) )  <->  ( (
x  e.  ~P A  /\  U. x  =  A )  /\  ( card `  x )  C_  ( card `  B ) ) )
2019exbii 1774 . . . . . . . . 9  |-  ( E. x ( x  e. 
{ x  e.  ~P A  |  U. x  =  A }  /\  ( card `  x )  C_  ( card `  B )
)  <->  E. x ( ( x  e.  ~P A  /\  U. x  =  A )  /\  ( card `  x )  C_  ( card `  B ) ) )
2117, 20bitri 264 . . . . . . . 8  |-  ( E. x  e.  { x  e.  ~P A  |  U. x  =  A } 
( card `  x )  C_  ( card `  B
)  <->  E. x ( ( x  e.  ~P A  /\  U. x  =  A )  /\  ( card `  x )  C_  ( card `  B ) ) )
2216, 21sylibr 224 . . . . . . 7  |-  ( ( ( B  C_  A  /\  U. B  =  A )  /\  ( card `  B )  C_  ( card `  B ) )  ->  E. x  e.  {
x  e.  ~P A  |  U. x  =  A }  ( card `  x
)  C_  ( card `  B ) )
232, 22mpan2 707 . . . . . 6  |-  ( ( B  C_  A  /\  U. B  =  A )  ->  E. x  e.  {
x  e.  ~P A  |  U. x  =  A }  ( card `  x
)  C_  ( card `  B ) )
24 iinss 4571 . . . . . 6  |-  ( E. x  e.  { x  e.  ~P A  |  U. x  =  A } 
( card `  x )  C_  ( card `  B
)  ->  |^|_ x  e. 
{ x  e.  ~P A  |  U. x  =  A }  ( card `  x )  C_  ( card `  B ) )
2523, 24syl 17 . . . . 5  |-  ( ( B  C_  A  /\  U. B  =  A )  ->  |^|_ x  e.  {
x  e.  ~P A  |  U. x  =  A }  ( card `  x
)  C_  ( card `  B ) )
263cflim3 9084 . . . . . 6  |-  ( Lim 
A  ->  ( cf `  A )  =  |^|_ x  e.  { x  e. 
~P A  |  U. x  =  A } 
( card `  x )
)
2726sseq1d 3632 . . . . 5  |-  ( Lim 
A  ->  ( ( cf `  A )  C_  ( card `  B )  <->  |^|_
x  e.  { x  e.  ~P A  |  U. x  =  A } 
( card `  x )  C_  ( card `  B
) ) )
2825, 27syl5ibr 236 . . . 4  |-  ( Lim 
A  ->  ( ( B  C_  A  /\  U. B  =  A )  ->  ( cf `  A
)  C_  ( card `  B ) ) )
29283impib 1262 . . 3  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  ( cf `  A )  C_  ( card `  B )
)
30 ssdomg 8001 . . 3  |-  ( (
card `  B )  e.  _V  ->  ( ( cf `  A )  C_  ( card `  B )  ->  ( cf `  A
)  ~<_  ( card `  B
) ) )
311, 29, 30mpsyl 68 . 2  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  ( cf `  A )  ~<_  (
card `  B )
)
324adantl 482 . . . . 5  |-  ( ( Lim  A  /\  B  C_  A )  ->  B  e.  _V )
33 limord 5784 . . . . . . 7  |-  ( Lim 
A  ->  Ord  A )
34 ordsson 6989 . . . . . . 7  |-  ( Ord 
A  ->  A  C_  On )
3533, 34syl 17 . . . . . 6  |-  ( Lim 
A  ->  A  C_  On )
36 sstr2 3610 . . . . . 6  |-  ( B 
C_  A  ->  ( A  C_  On  ->  B  C_  On ) )
3735, 36mpan9 486 . . . . 5  |-  ( ( Lim  A  /\  B  C_  A )  ->  B  C_  On )
38 onssnum 8863 . . . . 5  |-  ( ( B  e.  _V  /\  B  C_  On )  ->  B  e.  dom  card )
3932, 37, 38syl2anc 693 . . . 4  |-  ( ( Lim  A  /\  B  C_  A )  ->  B  e.  dom  card )
40 cardid2 8779 . . . 4  |-  ( B  e.  dom  card  ->  (
card `  B )  ~~  B )
4139, 40syl 17 . . 3  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( card `  B )  ~~  B )
42413adant3 1081 . 2  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  ( card `  B )  ~~  B )
43 domentr 8015 . 2  |-  ( ( ( cf `  A
)  ~<_  ( card `  B
)  /\  ( card `  B )  ~~  B
)  ->  ( cf `  A )  ~<_  B )
4431, 42, 43syl2anc 693 1  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  ( cf `  A )  ~<_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   |^|_ciin 4521   class class class wbr 4653   dom cdm 5114   Ord word 5722   Oncon0 5723   Lim wlim 5724   ` cfv 5888    ~~ cen 7952    ~<_ cdom 7953   cardccrd 8761   cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-card 8765  df-cf 8767
This theorem is referenced by:  cfslbn  9089  cfslb2n  9090  rankcf  9599
  Copyright terms: Public domain W3C validator