MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreb Structured version   Visualization version   Unicode version

Theorem cjreb 13863
Description: A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjreb  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )

Proof of Theorem cjreb
StepHypRef Expression
1 recl 13850 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21recnd 10068 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
3 ax-icn 9995 . . . . . 6  |-  _i  e.  CC
4 imcl 13851 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
54recnd 10068 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
6 mulcl 10020 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
73, 5, 6sylancr 695 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
82, 7negsubd 10398 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  -u (
_i  x.  ( Im `  A ) ) )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
9 mulneg2 10467 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  -u (
Im `  A )
)  =  -u (
_i  x.  ( Im `  A ) ) )
103, 5, 9sylancr 695 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  =  -u ( _i  x.  ( Im `  A ) ) )
1110oveq2d 6666 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( _i  x.  -u ( Im `  A ) ) )  =  ( ( Re
`  A )  + 
-u ( _i  x.  ( Im `  A ) ) ) )
12 remim 13857 . . . 4  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
138, 11, 123eqtr4rd 2667 . . 3  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  +  ( _i  x.  -u (
Im `  A )
) ) )
14 replim 13856 . . 3  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
1513, 14eqeq12d 2637 . 2  |-  ( A  e.  CC  ->  (
( * `  A
)  =  A  <->  ( (
Re `  A )  +  ( _i  x.  -u ( Im `  A
) ) )  =  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) ) ) )
165negcld 10379 . . . 4  |-  ( A  e.  CC  ->  -u (
Im `  A )  e.  CC )
17 mulcl 10020 . . . 4  |-  ( ( _i  e.  CC  /\  -u ( Im `  A
)  e.  CC )  ->  ( _i  x.  -u ( Im `  A
) )  e.  CC )
183, 16, 17sylancr 695 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  -u ( Im
`  A ) )  e.  CC )
192, 18, 7addcand 10239 . 2  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  -u (
Im `  A )
) )  =  ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  <-> 
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) ) ) )
20 eqcom 2629 . . . 4  |-  ( -u ( Im `  A )  =  ( Im `  A )  <->  ( Im `  A )  =  -u ( Im `  A ) )
215eqnegd 10746 . . . 4  |-  ( A  e.  CC  ->  (
( Im `  A
)  =  -u (
Im `  A )  <->  ( Im `  A )  =  0 ) )
2220, 21syl5bb 272 . . 3  |-  ( A  e.  CC  ->  ( -u ( Im `  A
)  =  ( Im
`  A )  <->  ( Im `  A )  =  0 ) )
23 ine0 10465 . . . . . 6  |-  _i  =/=  0
243, 23pm3.2i 471 . . . . 5  |-  ( _i  e.  CC  /\  _i  =/=  0 )
2524a1i 11 . . . 4  |-  ( A  e.  CC  ->  (
_i  e.  CC  /\  _i  =/=  0 ) )
26 mulcan 10664 . . . 4  |-  ( (
-u ( Im `  A )  e.  CC  /\  ( Im `  A
)  e.  CC  /\  ( _i  e.  CC  /\  _i  =/=  0 ) )  ->  ( (
_i  x.  -u ( Im
`  A ) )  =  ( _i  x.  ( Im `  A ) )  <->  -u ( Im `  A )  =  ( Im `  A ) ) )
2716, 5, 25, 26syl3anc 1326 . . 3  |-  ( A  e.  CC  ->  (
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) )  <->  -u ( Im
`  A )  =  ( Im `  A
) ) )
28 reim0b 13859 . . 3  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
2922, 27, 283bitr4d 300 . 2  |-  ( A  e.  CC  ->  (
( _i  x.  -u (
Im `  A )
)  =  ( _i  x.  ( Im `  A ) )  <->  A  e.  RR ) )
3015, 19, 293bitrrd 295 1  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   *ccj 13836   Recre 13837   Imcim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  cjre  13879  cjmulrcl  13884  cjrebi  13914  cjrebd  13942  hire  27951
  Copyright terms: Public domain W3C validator