MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1t Structured version   Visualization version   Unicode version

Theorem cnmpt1t 21468
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt1t.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
Assertion
Ref Expression
cnmpt1t  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Distinct variable groups:    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cnmpt1t
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponuni 20719 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3 mpteq1 4737 . . . 4  |-  ( X  =  U. J  -> 
( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
41, 2, 33syl 18 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
5 simpr 477 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
6 cnmpt11.a . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
7 cntop2 21045 . . . . . . . . . . 11  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 17 . . . . . . . . . 10  |-  ( ph  ->  K  e.  Top )
9 eqid 2622 . . . . . . . . . . 11  |-  U. K  =  U. K
109toptopon 20722 . . . . . . . . . 10  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 208 . . . . . . . . 9  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
12 cnf2 21053 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  A ) : X --> U. K
)
131, 11, 6, 12syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> U. K )
14 eqid 2622 . . . . . . . . 9  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
1514fmpt 6381 . . . . . . . 8  |-  ( A. x  e.  X  A  e.  U. K  <->  ( x  e.  X  |->  A ) : X --> U. K
)
1613, 15sylibr 224 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A  e.  U. K )
1716r19.21bi 2932 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  U. K )
1814fvmpt2 6291 . . . . . 6  |-  ( ( x  e.  X  /\  A  e.  U. K )  ->  ( ( x  e.  X  |->  A ) `
 x )  =  A )
195, 17, 18syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  A ) `  x
)  =  A )
20 cnmpt1t.b . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
21 cntop2 21045 . . . . . . . . . . 11  |-  ( ( x  e.  X  |->  B )  e.  ( J  Cn  L )  ->  L  e.  Top )
2220, 21syl 17 . . . . . . . . . 10  |-  ( ph  ->  L  e.  Top )
23 eqid 2622 . . . . . . . . . . 11  |-  U. L  =  U. L
2423toptopon 20722 . . . . . . . . . 10  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
2522, 24sylib 208 . . . . . . . . 9  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
26 cnf2 21053 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  X  |->  B ) : X --> U. L
)
271, 25, 20, 26syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> U. L )
28 eqid 2622 . . . . . . . . 9  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
2928fmpt 6381 . . . . . . . 8  |-  ( A. x  e.  X  B  e.  U. L  <->  ( x  e.  X  |->  B ) : X --> U. L
)
3027, 29sylibr 224 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  B  e.  U. L )
3130r19.21bi 2932 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  U. L )
3228fvmpt2 6291 . . . . . 6  |-  ( ( x  e.  X  /\  B  e.  U. L )  ->  ( ( x  e.  X  |->  B ) `
 x )  =  B )
335, 31, 32syl2anc 693 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  B ) `  x
)  =  B )
3419, 33opeq12d 4410 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. A ,  B >. )
3534mpteq2dva 4744 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
364, 35eqtr3d 2658 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
37 eqid 2622 . . . 4  |-  U. J  =  U. J
38 nfcv 2764 . . . . 5  |-  F/_ y <. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >.
39 nffvmpt1 6199 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  A ) `  y )
40 nffvmpt1 6199 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  B ) `  y )
4139, 40nfop 4418 . . . . 5  |-  F/_ x <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >.
42 fveq2 6191 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  A ) `  x
)  =  ( ( x  e.  X  |->  A ) `  y ) )
43 fveq2 6191 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  B ) `  x
)  =  ( ( x  e.  X  |->  B ) `  y ) )
4442, 43opeq12d 4410 . . . . 5  |-  ( x  =  y  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `
 y ) >.
)
4538, 41, 44cbvmpt 4749 . . . 4  |-  ( x  e.  U. J  |->  <.
( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( y  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >. )
4637, 45txcnmpt 21427 . . 3  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  e.  ( J  Cn  ( K 
tX  L ) ) )
476, 20, 46syl2anc 693 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  e.  ( J  Cn  ( K  tX  L ) ) )
4836, 47eqeltrrd 2702 1  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   U.cuni 4436    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-tx 21365
This theorem is referenced by:  cnmpt12f  21469  xkoinjcn  21490  txconn  21492  imasnopn  21493  imasncld  21494  imasncls  21495  ptunhmeo  21611  xkohmeo  21618  cnrehmeo  22752
  Copyright terms: Public domain W3C validator