Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem54 Structured version   Visualization version   Unicode version

Theorem dalem54 35012
Description: Lemma for dath 35022. Line  G H intersects the auxiliary axis of perspectivity  B. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
dalem54.m  |-  ./\  =  ( meet `  K )
dalem54.o  |-  O  =  ( LPlanes `  K )
dalem54.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem54.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem54.g  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
dalem54.h  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
dalem54.i  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
dalem54.b1  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
Assertion
Ref Expression
dalem54  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  B )  e.  A )

Proof of Theorem dalem54
StepHypRef Expression
1 dalem.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkehl 34909 . . 3  |-  ( ph  ->  K  e.  HL )
323ad2ant1 1082 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
4 dalem.l . . . 4  |-  .<_  =  ( le `  K )
5 dalem.j . . . 4  |-  .\/  =  ( join `  K )
6 dalem.a . . . 4  |-  A  =  ( Atoms `  K )
7 dalem.ps . . . 4  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
8 dalem54.m . . . 4  |-  ./\  =  ( meet `  K )
9 dalem54.o . . . 4  |-  O  =  ( LPlanes `  K )
10 dalem54.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
11 dalem54.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
12 dalem54.g . . . 4  |-  G  =  ( ( c  .\/  P )  ./\  ( d  .\/  S ) )
131, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem23 34982 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  A )
14 dalem54.h . . . 4  |-  H  =  ( ( c  .\/  Q )  ./\  ( d  .\/  T ) )
151, 4, 5, 6, 7, 8, 9, 10, 11, 14dalem29 34987 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  e.  A )
16 dalem54.i . . . 4  |-  I  =  ( ( c  .\/  R )  ./\  ( d  .\/  U ) )
171, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem41 34999 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  =/=  H )
18 eqid 2622 . . . 4  |-  ( LLines `  K )  =  (
LLines `  K )
195, 6, 18llni2 34798 . . 3  |-  ( ( ( K  e.  HL  /\  G  e.  A  /\  H  e.  A )  /\  G  =/=  H
)  ->  ( G  .\/  H )  e.  (
LLines `  K ) )
203, 13, 15, 17, 19syl31anc 1329 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .\/  H
)  e.  ( LLines `  K ) )
21 dalem54.b1 . . 3  |-  B  =  ( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)
221, 4, 5, 6, 7, 8, 18, 9, 10, 11, 12, 14, 16, 21dalem53 35011 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  e.  ( LLines `  K ) )
231dalemkelat 34910 . . . . . . 7  |-  ( ph  ->  K  e.  Lat )
24233ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  Lat )
25 eqid 2622 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2625, 18llnbase 34795 . . . . . . . 8  |-  ( ( G  .\/  H )  e.  ( LLines `  K
)  ->  ( G  .\/  H )  e.  (
Base `  K )
)
2720, 26syl 17 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .\/  H
)  e.  ( Base `  K ) )
281, 4, 5, 6, 7, 8, 9, 10, 11, 16dalem34 34992 . . . . . . . 8  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  A )
2925, 6atbase 34576 . . . . . . . 8  |-  ( I  e.  A  ->  I  e.  ( Base `  K
) )
3028, 29syl 17 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  I  e.  ( Base `  K ) )
3125, 5latjcl 17051 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  I  e.  ( Base `  K )
)  ->  ( ( G  .\/  H )  .\/  I )  e.  (
Base `  K )
)
3224, 27, 30, 31syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .\/  I )  e.  ( Base `  K
) )
331, 9dalemyeb 34935 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  K ) )
34333ad2ant1 1082 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  e.  ( Base `  K ) )
3525, 4, 8latmle2 17077 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( G  .\/  H )  .\/  I )  e.  ( Base `  K
)  /\  Y  e.  ( Base `  K )
)  ->  ( (
( G  .\/  H
)  .\/  I )  ./\  Y )  .<_  Y )
3624, 32, 34, 35syl3anc 1326 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( G 
.\/  H )  .\/  I )  ./\  Y
)  .<_  Y )
3721, 36syl5eqbr 4688 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  .<_  Y )
381, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem24 34983 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  G  .<_  Y )
3925, 6atbase 34576 . . . . . . . 8  |-  ( G  e.  A  ->  G  e.  ( Base `  K
) )
4013, 39syl 17 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  G  e.  ( Base `  K ) )
4125, 6atbase 34576 . . . . . . . 8  |-  ( H  e.  A  ->  H  e.  ( Base `  K
) )
4215, 41syl 17 . . . . . . 7  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  H  e.  ( Base `  K ) )
4325, 4, 5latjle12 17062 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( G  e.  ( Base `  K )  /\  H  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) ) )  -> 
( ( G  .<_  Y  /\  H  .<_  Y )  <-> 
( G  .\/  H
)  .<_  Y ) )
4424, 40, 42, 34, 43syl13anc 1328 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .<_  Y  /\  H  .<_  Y )  <-> 
( G  .\/  H
)  .<_  Y ) )
45 simpl 473 . . . . . 6  |-  ( ( G  .<_  Y  /\  H  .<_  Y )  ->  G  .<_  Y )
4644, 45syl6bir 244 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  .<_  Y  ->  G 
.<_  Y ) )
4738, 46mtod 189 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  ( G  .\/  H
)  .<_  Y )
48 nbrne2 4673 . . . 4  |-  ( ( B  .<_  Y  /\  -.  ( G  .\/  H
)  .<_  Y )  ->  B  =/=  ( G  .\/  H ) )
4937, 47, 48syl2anc 693 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  =/=  ( G  .\/  H ) )
5049necomd 2849 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( G  .\/  H
)  =/=  B )
51 hlatl 34647 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
523, 51syl 17 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  AtLat )
5325, 18llnbase 34795 . . . . 5  |-  ( B  e.  ( LLines `  K
)  ->  B  e.  ( Base `  K )
)
5422, 53syl 17 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  B  e.  ( Base `  K ) )
5525, 8latmcl 17052 . . . 4  |-  ( ( K  e.  Lat  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  B  e.  ( Base `  K )
)  ->  ( ( G  .\/  H )  ./\  B )  e.  ( Base `  K ) )
5624, 27, 54, 55syl3anc 1326 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  B )  e.  ( Base `  K
) )
571, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem52 35010 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  e.  A )
581, 5, 6dalempjqeb 34931 . . . . . 6  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
59583ad2ant1 1082 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
6025, 4, 8latmle1 17076 . . . . 5  |-  ( ( K  e.  Lat  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
)  ->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( G  .\/  H ) )
6124, 27, 59, 60syl3anc 1326 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( G  .\/  H ) )
621, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem51 35009 . . . . . 6  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( ( K  e.  HL  /\  c  e.  A )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A
)  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  ( ( ( G 
.\/  H )  .\/  I )  e.  O  /\  Y  e.  O
)  /\  ( ( -.  c  .<_  ( G 
.\/  H )  /\  -.  c  .<_  ( H 
.\/  I )  /\  -.  c  .<_  ( I 
.\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q
)  /\  -.  c  .<_  ( Q  .\/  R
)  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) )  /\  (
( G  .\/  H
)  .\/  I )  =/=  Y ) )
6362simpld 475 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( K  e.  HL  /\  c  e.  A )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  (
( ( G  .\/  H )  .\/  I )  e.  O  /\  Y  e.  O )  /\  (
( -.  c  .<_  ( G  .\/  H )  /\  -.  c  .<_  ( H  .\/  I )  /\  -.  c  .<_  ( I  .\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q )  /\  -.  c  .<_  ( Q  .\/  R )  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) ) )
6425, 6atbase 34576 . . . . . . . 8  |-  ( c  e.  A  ->  c  e.  ( Base `  K
) )
6564anim2i 593 . . . . . . 7  |-  ( ( K  e.  HL  /\  c  e.  A )  ->  ( K  e.  HL  /\  c  e.  ( Base `  K ) ) )
66653anim1i 1248 . . . . . 6  |-  ( ( ( K  e.  HL  /\  c  e.  A )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )
)  ->  ( ( K  e.  HL  /\  c  e.  ( Base `  K
) )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) ) )
67 biid 251 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  c  e.  ( Base `  K
) )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  (
( ( G  .\/  H )  .\/  I )  e.  O  /\  Y  e.  O )  /\  (
( -.  c  .<_  ( G  .\/  H )  /\  -.  c  .<_  ( H  .\/  I )  /\  -.  c  .<_  ( I  .\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q )  /\  -.  c  .<_  ( Q  .\/  R )  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) )  <->  ( (
( K  e.  HL  /\  c  e.  ( Base `  K ) )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A
)  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  /\  ( ( ( G 
.\/  H )  .\/  I )  e.  O  /\  Y  e.  O
)  /\  ( ( -.  c  .<_  ( G 
.\/  H )  /\  -.  c  .<_  ( H 
.\/  I )  /\  -.  c  .<_  ( I 
.\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q
)  /\  -.  c  .<_  ( Q  .\/  R
)  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) ) )
68 eqid 2622 . . . . . . 7  |-  ( ( G  .\/  H ) 
.\/  I )  =  ( ( G  .\/  H )  .\/  I )
69 eqid 2622 . . . . . . 7  |-  ( ( G  .\/  H ) 
./\  ( P  .\/  Q ) )  =  ( ( G  .\/  H
)  ./\  ( P  .\/  Q ) )
7067, 4, 5, 6, 8, 9, 68, 10, 21, 69dalem10 34959 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  c  e.  ( Base `  K
) )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  (
( ( G  .\/  H )  .\/  I )  e.  O  /\  Y  e.  O )  /\  (
( -.  c  .<_  ( G  .\/  H )  /\  -.  c  .<_  ( H  .\/  I )  /\  -.  c  .<_  ( I  .\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q )  /\  -.  c  .<_  ( Q  .\/  R )  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) )  ->  (
( G  .\/  H
)  ./\  ( P  .\/  Q ) )  .<_  B )
7166, 70syl3an1 1359 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  c  e.  A )  /\  ( G  e.  A  /\  H  e.  A  /\  I  e.  A )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
) )  /\  (
( ( G  .\/  H )  .\/  I )  e.  O  /\  Y  e.  O )  /\  (
( -.  c  .<_  ( G  .\/  H )  /\  -.  c  .<_  ( H  .\/  I )  /\  -.  c  .<_  ( I  .\/  G ) )  /\  ( -.  c  .<_  ( P  .\/  Q )  /\  -.  c  .<_  ( Q  .\/  R )  /\  -.  c  .<_  ( R  .\/  P
) )  /\  (
c  .<_  ( G  .\/  P )  /\  c  .<_  ( H  .\/  Q )  /\  c  .<_  ( I 
.\/  R ) ) ) )  ->  (
( G  .\/  H
)  ./\  ( P  .\/  Q ) )  .<_  B )
7263, 71syl 17 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  B )
7325, 8latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
)  ->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  e.  ( Base `  K ) )
7424, 27, 59, 73syl3anc 1326 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  e.  ( Base `  K
) )
7525, 4, 8latlem12 17078 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( ( G 
.\/  H )  ./\  ( P  .\/  Q ) )  e.  ( Base `  K )  /\  ( G  .\/  H )  e.  ( Base `  K
)  /\  B  e.  ( Base `  K )
) )  ->  (
( ( ( G 
.\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( G  .\/  H )  /\  (
( G  .\/  H
)  ./\  ( P  .\/  Q ) )  .<_  B )  <->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( G  .\/  H )  ./\  B ) ) )
7624, 74, 27, 54, 75syl13anc 1328 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( ( ( G  .\/  H ) 
./\  ( P  .\/  Q ) )  .<_  ( G 
.\/  H )  /\  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  B )  <->  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( G  .\/  H )  ./\  B ) ) )
7761, 72, 76mpbi2and 956 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( G  .\/  H )  ./\  B )
)
78 eqid 2622 . . . 4  |-  ( 0.
`  K )  =  ( 0. `  K
)
7925, 4, 78, 6atlen0 34597 . . 3  |-  ( ( ( K  e.  AtLat  /\  ( ( G  .\/  H )  ./\  B )  e.  ( Base `  K
)  /\  ( ( G  .\/  H )  ./\  ( P  .\/  Q ) )  e.  A )  /\  ( ( G 
.\/  H )  ./\  ( P  .\/  Q ) )  .<_  ( ( G  .\/  H )  ./\  B ) )  ->  (
( G  .\/  H
)  ./\  B )  =/=  ( 0. `  K
) )
8052, 56, 57, 77, 79syl31anc 1329 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  B )  =/=  ( 0. `  K
) )
818, 78, 6, 182llnmat 34810 . 2  |-  ( ( ( K  e.  HL  /\  ( G  .\/  H
)  e.  ( LLines `  K )  /\  B  e.  ( LLines `  K )
)  /\  ( ( G  .\/  H )  =/= 
B  /\  ( ( G  .\/  H )  ./\  B )  =/=  ( 0.
`  K ) ) )  ->  ( ( G  .\/  H )  ./\  B )  e.  A )
823, 20, 22, 50, 80, 81syl32anc 1334 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( G  .\/  H )  ./\  B )  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   0.cp0 17037   Latclat 17045   Atomscatm 34550   AtLatcal 34551   HLchlt 34637   LLinesclln 34777   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786
This theorem is referenced by:  dalem55  35013  dalem57  35015
  Copyright terms: Public domain W3C validator