MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8alem Structured version   Visualization version   Unicode version

Theorem dfac8alem 8852
Description: Lemma for dfac8a 8853. If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Hypotheses
Ref Expression
dfac8alem.2  |-  F  = recs ( G )
dfac8alem.3  |-  G  =  ( f  e.  _V  |->  ( g `  ( A  \  ran  f ) ) )
Assertion
Ref Expression
dfac8alem  |-  ( A  e.  C  ->  ( E. g A. y  e. 
~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
Distinct variable groups:    f, g,
y, A    C, g    f, F, y
Allowed substitution hints:    C( y, f)    F( g)    G( y, f, g)

Proof of Theorem dfac8alem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
2 difss 3737 . . . . . . . . . . . 12  |-  ( A 
\  ( F "
x ) )  C_  A
3 elpw2g 4827 . . . . . . . . . . . 12  |-  ( A  e.  _V  ->  (
( A  \  ( F " x ) )  e.  ~P A  <->  ( A  \  ( F " x
) )  C_  A
) )
42, 3mpbiri 248 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( A  \  ( F "
x ) )  e. 
~P A )
5 neeq1 2856 . . . . . . . . . . . . 13  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
y  =/=  (/)  <->  ( A  \  ( F " x
) )  =/=  (/) ) )
6 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
g `  y )  =  ( g `  ( A  \  ( F " x ) ) ) )
7 id 22 . . . . . . . . . . . . . 14  |-  ( y  =  ( A  \ 
( F " x
) )  ->  y  =  ( A  \ 
( F " x
) ) )
86, 7eleq12d 2695 . . . . . . . . . . . . 13  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
( g `  y
)  e.  y  <->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) )
95, 8imbi12d 334 . . . . . . . . . . . 12  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
( y  =/=  (/)  ->  (
g `  y )  e.  y )  <->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
109rspcv 3305 . . . . . . . . . . 11  |-  ( ( A  \  ( F
" x ) )  e.  ~P A  -> 
( A. y  e. 
~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
114, 10syl 17 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
12113imp 1256 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y )  /\  ( A  \  ( F "
x ) )  =/=  (/) )  ->  ( g `
 ( A  \ 
( F " x
) ) )  e.  ( A  \  ( F " x ) ) )
13 dfac8alem.2 . . . . . . . . . . . 12  |-  F  = recs ( G )
1413tfr2 7494 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) )
1513tfr1 7493 . . . . . . . . . . . . . 14  |-  F  Fn  On
16 fnfun 5988 . . . . . . . . . . . . . 14  |-  ( F  Fn  On  ->  Fun  F )
1715, 16ax-mp 5 . . . . . . . . . . . . 13  |-  Fun  F
18 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
19 resfunexg 6479 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  x  e.  _V )  ->  ( F  |`  x )  e. 
_V )
2017, 18, 19mp2an 708 . . . . . . . . . . . 12  |-  ( F  |`  x )  e.  _V
21 rneq 5351 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( F  |`  x )  ->  ran  f  =  ran  ( F  |`  x ) )
22 df-ima 5127 . . . . . . . . . . . . . . . 16  |-  ( F
" x )  =  ran  ( F  |`  x )
2321, 22syl6eqr 2674 . . . . . . . . . . . . . . 15  |-  ( f  =  ( F  |`  x )  ->  ran  f  =  ( F " x ) )
2423difeq2d 3728 . . . . . . . . . . . . . 14  |-  ( f  =  ( F  |`  x )  ->  ( A  \  ran  f )  =  ( A  \ 
( F " x
) ) )
2524fveq2d 6195 . . . . . . . . . . . . 13  |-  ( f  =  ( F  |`  x )  ->  (
g `  ( A  \  ran  f ) )  =  ( g `  ( A  \  ( F " x ) ) ) )
26 dfac8alem.3 . . . . . . . . . . . . 13  |-  G  =  ( f  e.  _V  |->  ( g `  ( A  \  ran  f ) ) )
27 fvex 6201 . . . . . . . . . . . . 13  |-  ( g `
 ( A  \ 
( F " x
) ) )  e. 
_V
2825, 26, 27fvmpt 6282 . . . . . . . . . . . 12  |-  ( ( F  |`  x )  e.  _V  ->  ( G `  ( F  |`  x
) )  =  ( g `  ( A 
\  ( F "
x ) ) ) )
2920, 28ax-mp 5 . . . . . . . . . . 11  |-  ( G `
 ( F  |`  x ) )  =  ( g `  ( A  \  ( F "
x ) ) )
3014, 29syl6eq 2672 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( F `  x )  =  ( g `  ( A  \  ( F " x ) ) ) )
3130eleq1d 2686 . . . . . . . . 9  |-  ( x  e.  On  ->  (
( F `  x
)  e.  ( A 
\  ( F "
x ) )  <->  ( g `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) )
3212, 31syl5ibrcom 237 . . . . . . . 8  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y )  /\  ( A  \  ( F "
x ) )  =/=  (/) )  ->  ( x  e.  On  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
33323expia 1267 . . . . . . 7  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y ) )  -> 
( ( A  \ 
( F " x
) )  =/=  (/)  ->  (
x  e.  On  ->  ( F `  x )  e.  ( A  \ 
( F " x
) ) ) ) )
3433com23 86 . . . . . 6  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y ) )  -> 
( x  e.  On  ->  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) ) )
3534ralrimiv 2965 . . . . 5  |-  ( ( A  e.  _V  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  (
g `  y )  e.  y ) )  ->  A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
3635ex 450 . . . 4  |-  ( A  e.  _V  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A. x  e.  On  ( ( A 
\  ( F "
x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) ) )
3715tz7.49c 7541 . . . . . 6  |-  ( ( A  e.  _V  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
3837ex 450 . . . . 5  |-  ( A  e.  _V  ->  ( A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A ) )
3918f1oen 7976 . . . . . . 7  |-  ( ( F  |`  x ) : x -1-1-onto-> A  ->  x  ~~  A )
40 isnumi 8772 . . . . . . 7  |-  ( ( x  e.  On  /\  x  ~~  A )  ->  A  e.  dom  card )
4139, 40sylan2 491 . . . . . 6  |-  ( ( x  e.  On  /\  ( F  |`  x ) : x -1-1-onto-> A )  ->  A  e.  dom  card )
4241rexlimiva 3028 . . . . 5  |-  ( E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A  ->  A  e.  dom  card )
4338, 42syl6 35 . . . 4  |-  ( A  e.  _V  ->  ( A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) )  ->  A  e.  dom  card ) )
4436, 43syld 47 . . 3  |-  ( A  e.  _V  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
451, 44syl 17 . 2  |-  ( A  e.  C  ->  ( A. y  e.  ~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
4645exlimdv 1861 1  |-  ( A  e.  C  ->  ( E. g A. y  e. 
~P  A ( y  =/=  (/)  ->  ( g `  y )  e.  y )  ->  A  e.  dom  card ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888  recscrecs 7467    ~~ cen 7952   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468  df-en 7956  df-card 8765
This theorem is referenced by:  dfac8a  8853
  Copyright terms: Public domain W3C validator