MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divmuleq Structured version   Visualization version   Unicode version

Theorem divmuleq 10730
Description: Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
divmuleq  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  =  ( B  /  D
)  <->  ( A  x.  D )  =  ( B  x.  C ) ) )

Proof of Theorem divmuleq
StepHypRef Expression
1 divcl 10691 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  ( A  /  C )  e.  CC )
213expb 1266 . . . 4  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( A  /  C )  e.  CC )
32ad2ant2r 783 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( A  /  C )  e.  CC )
4 divcl 10691 . . . . 5  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  ( B  /  D )  e.  CC )
543expb 1266 . . . 4  |-  ( ( B  e.  CC  /\  ( D  e.  CC  /\  D  =/=  0 ) )  ->  ( B  /  D )  e.  CC )
65ad2ant2l 782 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( B  /  D )  e.  CC )
7 mulcl 10020 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 783 . . . . 5  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  e.  CC )
9 mulne0 10669 . . . . 5  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( C  x.  D
)  =/=  0 )
108, 9jca 554 . . . 4  |-  ( ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) )  -> 
( ( C  x.  D )  e.  CC  /\  ( C  x.  D
)  =/=  0 ) )
1110adantl 482 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D )  =/=  0 ) )
12 mulcan2 10665 . . 3  |-  ( ( ( A  /  C
)  e.  CC  /\  ( B  /  D
)  e.  CC  /\  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D
)  =/=  0 ) )  ->  ( (
( A  /  C
)  x.  ( C  x.  D ) )  =  ( ( B  /  D )  x.  ( C  x.  D
) )  <->  ( A  /  C )  =  ( B  /  D ) ) )
133, 6, 11, 12syl3anc 1326 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( A  /  C )  x.  ( C  x.  D ) )  =  ( ( B  /  D )  x.  ( C  x.  D )
)  <->  ( A  /  C )  =  ( B  /  D ) ) )
14 simprll 802 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  C  e.  CC )
15 simprrl 804 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  D  e.  CC )
163, 14, 15mulassd 10063 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( A  /  C )  x.  C )  x.  D )  =  ( ( A  /  C
)  x.  ( C  x.  D ) ) )
17 divcan1 10694 . . . . . . 7  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  (
( A  /  C
)  x.  C )  =  A )
18173expb 1266 . . . . . 6  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( ( A  /  C )  x.  C )  =  A )
1918ad2ant2r 783 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  x.  C )  =  A )
2019oveq1d 6665 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( A  /  C )  x.  C )  x.  D )  =  ( A  x.  D ) )
2116, 20eqtr3d 2658 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  x.  ( C  x.  D
) )  =  ( A  x.  D ) )
2214, 15mulcomd 10061 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2322oveq2d 6666 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( B  /  D )  x.  ( C  x.  D
) )  =  ( ( B  /  D
)  x.  ( D  x.  C ) ) )
246, 15, 14mulassd 10063 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( B  /  D )  x.  D )  x.  C )  =  ( ( B  /  D
)  x.  ( D  x.  C ) ) )
25 divcan1 10694 . . . . . . 7  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D  =/=  0 )  ->  (
( B  /  D
)  x.  D )  =  B )
26253expb 1266 . . . . . 6  |-  ( ( B  e.  CC  /\  ( D  e.  CC  /\  D  =/=  0 ) )  ->  ( ( B  /  D )  x.  D )  =  B )
2726ad2ant2l 782 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( B  /  D )  x.  D )  =  B )
2827oveq1d 6665 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( B  /  D )  x.  D )  x.  C )  =  ( B  x.  C ) )
2923, 24, 283eqtr2d 2662 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( B  /  D )  x.  ( C  x.  D
) )  =  ( B  x.  C ) )
3021, 29eqeq12d 2637 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( ( A  /  C )  x.  ( C  x.  D ) )  =  ( ( B  /  D )  x.  ( C  x.  D )
)  <->  ( A  x.  D )  =  ( B  x.  C ) ) )
3113, 30bitr3d 270 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C  =/=  0 )  /\  ( D  e.  CC  /\  D  =/=  0 ) ) )  ->  ( ( A  /  C )  =  ( B  /  D
)  <->  ( A  x.  D )  =  ( B  x.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   0cc0 9936    x. cmul 9941    / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  divmuleqd  10847
  Copyright terms: Public domain W3C validator