| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znleval | Structured version Visualization version Unicode version | ||
| Description: The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| znle2.y |
|
| znle2.f |
|
| znle2.w |
|
| znle2.l |
|
| znleval.x |
|
| Ref | Expression |
|---|---|
| znleval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znle2.y |
. . . . . . 7
| |
| 2 | znle2.f |
. . . . . . 7
| |
| 3 | znle2.w |
. . . . . . 7
| |
| 4 | znle2.l |
. . . . . . 7
| |
| 5 | 1, 2, 3, 4 | znle2 19902 |
. . . . . 6
|
| 6 | relco 5633 |
. . . . . . . 8
| |
| 7 | relssdmrn 5656 |
. . . . . . . 8
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
|
| 9 | dmcoss 5385 |
. . . . . . . . 9
| |
| 10 | df-rn 5125 |
. . . . . . . . . 10
| |
| 11 | znleval.x |
. . . . . . . . . . . 12
| |
| 12 | 1, 11, 2, 3 | znf1o 19900 |
. . . . . . . . . . 11
|
| 13 | f1ofo 6144 |
. . . . . . . . . . 11
| |
| 14 | forn 6118 |
. . . . . . . . . . 11
| |
| 15 | 12, 13, 14 | 3syl 18 |
. . . . . . . . . 10
|
| 16 | 10, 15 | syl5eqr 2670 |
. . . . . . . . 9
|
| 17 | 9, 16 | syl5sseq 3653 |
. . . . . . . 8
|
| 18 | rncoss 5386 |
. . . . . . . . 9
| |
| 19 | rncoss 5386 |
. . . . . . . . . 10
| |
| 20 | 19, 15 | syl5sseq 3653 |
. . . . . . . . 9
|
| 21 | 18, 20 | syl5ss 3614 |
. . . . . . . 8
|
| 22 | xpss12 5225 |
. . . . . . . 8
| |
| 23 | 17, 21, 22 | syl2anc 693 |
. . . . . . 7
|
| 24 | 8, 23 | syl5ss 3614 |
. . . . . 6
|
| 25 | 5, 24 | eqsstrd 3639 |
. . . . 5
|
| 26 | 25 | ssbrd 4696 |
. . . 4
|
| 27 | brxp 5147 |
. . . 4
| |
| 28 | 26, 27 | syl6ib 241 |
. . 3
|
| 29 | 28 | pm4.71rd 667 |
. 2
|
| 30 | 5 | adantr 481 |
. . . . . 6
|
| 31 | 30 | breqd 4664 |
. . . . 5
|
| 32 | brcog 5288 |
. . . . . . 7
| |
| 33 | 32 | adantl 482 |
. . . . . 6
|
| 34 | eqcom 2629 |
. . . . . . . . 9
| |
| 35 | 12 | adantr 481 |
. . . . . . . . . . 11
|
| 36 | f1ocnv 6149 |
. . . . . . . . . . 11
| |
| 37 | f1ofn 6138 |
. . . . . . . . . . 11
| |
| 38 | 35, 36, 37 | 3syl 18 |
. . . . . . . . . 10
|
| 39 | simprl 794 |
. . . . . . . . . 10
| |
| 40 | fnbrfvb 6236 |
. . . . . . . . . 10
| |
| 41 | 38, 39, 40 | syl2anc 693 |
. . . . . . . . 9
|
| 42 | 34, 41 | syl5rbb 273 |
. . . . . . . 8
|
| 43 | 42 | anbi1d 741 |
. . . . . . 7
|
| 44 | 43 | exbidv 1850 |
. . . . . 6
|
| 45 | 33, 44 | bitrd 268 |
. . . . 5
|
| 46 | fvex 6201 |
. . . . . . 7
| |
| 47 | breq1 4656 |
. . . . . . 7
| |
| 48 | 46, 47 | ceqsexv 3242 |
. . . . . 6
|
| 49 | simprr 796 |
. . . . . . . 8
| |
| 50 | brcog 5288 |
. . . . . . . 8
| |
| 51 | 46, 49, 50 | sylancr 695 |
. . . . . . 7
|
| 52 | fvex 6201 |
. . . . . . . . 9
| |
| 53 | breq2 4657 |
. . . . . . . . 9
| |
| 54 | 52, 53 | ceqsexv 3242 |
. . . . . . . 8
|
| 55 | eqcom 2629 |
. . . . . . . . . . . . 13
| |
| 56 | fnbrfvb 6236 |
. . . . . . . . . . . . . 14
| |
| 57 | 38, 49, 56 | syl2anc 693 |
. . . . . . . . . . . . 13
|
| 58 | 55, 57 | syl5bb 272 |
. . . . . . . . . . . 12
|
| 59 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 60 | brcnvg 5303 |
. . . . . . . . . . . . 13
| |
| 61 | 49, 59, 60 | sylancl 694 |
. . . . . . . . . . . 12
|
| 62 | 58, 61 | bitrd 268 |
. . . . . . . . . . 11
|
| 63 | 62 | anbi1d 741 |
. . . . . . . . . 10
|
| 64 | ancom 466 |
. . . . . . . . . 10
| |
| 65 | 63, 64 | syl6bbr 278 |
. . . . . . . . 9
|
| 66 | 65 | exbidv 1850 |
. . . . . . . 8
|
| 67 | 54, 66 | syl5bbr 274 |
. . . . . . 7
|
| 68 | 51, 67 | bitr4d 271 |
. . . . . 6
|
| 69 | 48, 68 | syl5bb 272 |
. . . . 5
|
| 70 | 31, 45, 69 | 3bitrd 294 |
. . . 4
|
| 71 | 70 | pm5.32da 673 |
. . 3
|
| 72 | df-3an 1039 |
. . 3
| |
| 73 | 71, 72 | syl6bbr 278 |
. 2
|
| 74 | 29, 73 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-dvds 14984 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-ip 15959 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-imas 16168 df-qus 16169 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-nsg 17592 df-eqg 17593 df-ghm 17658 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-oppr 18623 df-dvdsr 18641 df-rnghom 18715 df-subrg 18778 df-lmod 18865 df-lss 18933 df-lsp 18972 df-sra 19172 df-rgmod 19173 df-lidl 19174 df-rsp 19175 df-2idl 19232 df-cnfld 19747 df-zring 19819 df-zrh 19852 df-zn 19855 |
| This theorem is referenced by: znleval2 19904 |
| Copyright terms: Public domain | W3C validator |