Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch1 Structured version   Visualization version   Unicode version

Theorem dnnumch1 37614
Description: Define an enumeration of a set from a choice function; second part, it restricts to a bijection. EDITORIAL: overlaps dfac8a 8853. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f  |-  F  = recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) )
dnnumch.a  |-  ( ph  ->  A  e.  V )
dnnumch.g  |-  ( ph  ->  A. y  e.  ~P  A ( y  =/=  (/)  ->  ( G `  y )  e.  y ) )
Assertion
Ref Expression
dnnumch1  |-  ( ph  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Distinct variable groups:    x, F, y    x, G, y, z   
x, A, y, z    ph, x
Allowed substitution hints:    ph( y, z)    F( z)    V( x, y, z)

Proof of Theorem dnnumch1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dnnumch.a . 2  |-  ( ph  ->  A  e.  V )
2 recsval 7500 . . . . . . 7  |-  ( x  e.  On  ->  (recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) ) `
 x )  =  ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) `  (recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) )  |`  x ) ) )
3 dnnumch.f . . . . . . . 8  |-  F  = recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) )
43fveq1i 6192 . . . . . . 7  |-  ( F `
 x )  =  (recs ( ( z  e.  _V  |->  ( G `
 ( A  \  ran  z ) ) ) ) `  x )
53tfr1 7493 . . . . . . . . . . 11  |-  F  Fn  On
6 fnfun 5988 . . . . . . . . . . 11  |-  ( F  Fn  On  ->  Fun  F )
75, 6ax-mp 5 . . . . . . . . . 10  |-  Fun  F
8 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
9 resfunexg 6479 . . . . . . . . . 10  |-  ( ( Fun  F  /\  x  e.  _V )  ->  ( F  |`  x )  e. 
_V )
107, 8, 9mp2an 708 . . . . . . . . 9  |-  ( F  |`  x )  e.  _V
11 rneq 5351 . . . . . . . . . . . . 13  |-  ( w  =  ( F  |`  x )  ->  ran  w  =  ran  ( F  |`  x ) )
12 df-ima 5127 . . . . . . . . . . . . 13  |-  ( F
" x )  =  ran  ( F  |`  x )
1311, 12syl6eqr 2674 . . . . . . . . . . . 12  |-  ( w  =  ( F  |`  x )  ->  ran  w  =  ( F " x ) )
1413difeq2d 3728 . . . . . . . . . . 11  |-  ( w  =  ( F  |`  x )  ->  ( A  \  ran  w )  =  ( A  \ 
( F " x
) ) )
1514fveq2d 6195 . . . . . . . . . 10  |-  ( w  =  ( F  |`  x )  ->  ( G `  ( A  \  ran  w ) )  =  ( G `  ( A  \  ( F " x ) ) ) )
16 rneq 5351 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  ran  z  =  ran  w )
1716difeq2d 3728 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( A  \  ran  z )  =  ( A  \  ran  w ) )
1817fveq2d 6195 . . . . . . . . . . 11  |-  ( z  =  w  ->  ( G `  ( A  \  ran  z ) )  =  ( G `  ( A  \  ran  w
) ) )
1918cbvmptv 4750 . . . . . . . . . 10  |-  ( z  e.  _V  |->  ( G `
 ( A  \  ran  z ) ) )  =  ( w  e. 
_V  |->  ( G `  ( A  \  ran  w
) ) )
20 fvex 6201 . . . . . . . . . 10  |-  ( G `
 ( A  \ 
( F " x
) ) )  e. 
_V
2115, 19, 20fvmpt 6282 . . . . . . . . 9  |-  ( ( F  |`  x )  e.  _V  ->  ( (
z  e.  _V  |->  ( G `  ( A 
\  ran  z )
) ) `  ( F  |`  x ) )  =  ( G `  ( A  \  ( F " x ) ) ) )
2210, 21ax-mp 5 . . . . . . . 8  |-  ( ( z  e.  _V  |->  ( G `  ( A 
\  ran  z )
) ) `  ( F  |`  x ) )  =  ( G `  ( A  \  ( F " x ) ) )
233reseq1i 5392 . . . . . . . . 9  |-  ( F  |`  x )  =  (recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) )  |`  x )
2423fveq2i 6194 . . . . . . . 8  |-  ( ( z  e.  _V  |->  ( G `  ( A 
\  ran  z )
) ) `  ( F  |`  x ) )  =  ( ( z  e.  _V  |->  ( G `
 ( A  \  ran  z ) ) ) `
 (recs ( ( z  e.  _V  |->  ( G `  ( A 
\  ran  z )
) ) )  |`  x ) )
2522, 24eqtr3i 2646 . . . . . . 7  |-  ( G `
 ( A  \ 
( F " x
) ) )  =  ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) `  (recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) )  |`  x ) )
262, 4, 253eqtr4g 2681 . . . . . 6  |-  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( A  \  ( F " x ) ) ) )
2726ad2antlr 763 . . . . 5  |-  ( ( ( ph  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =/=  (/) )  ->  ( F `
 x )  =  ( G `  ( A  \  ( F "
x ) ) ) )
28 difss 3737 . . . . . . . . 9  |-  ( A 
\  ( F "
x ) )  C_  A
29 elpw2g 4827 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( A  \  ( F " x ) )  e.  ~P A  <->  ( A  \  ( F " x
) )  C_  A
) )
301, 29syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( A  \ 
( F " x
) )  e.  ~P A 
<->  ( A  \  ( F " x ) ) 
C_  A ) )
3128, 30mpbiri 248 . . . . . . . 8  |-  ( ph  ->  ( A  \  ( F " x ) )  e.  ~P A )
32 dnnumch.g . . . . . . . 8  |-  ( ph  ->  A. y  e.  ~P  A ( y  =/=  (/)  ->  ( G `  y )  e.  y ) )
33 neeq1 2856 . . . . . . . . . 10  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
y  =/=  (/)  <->  ( A  \  ( F " x
) )  =/=  (/) ) )
34 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  ( A  \ 
( F " x
) )  ->  ( G `  y )  =  ( G `  ( A  \  ( F " x ) ) ) )
35 id 22 . . . . . . . . . . 11  |-  ( y  =  ( A  \ 
( F " x
) )  ->  y  =  ( A  \ 
( F " x
) ) )
3634, 35eleq12d 2695 . . . . . . . . . 10  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
( G `  y
)  e.  y  <->  ( G `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) )
3733, 36imbi12d 334 . . . . . . . . 9  |-  ( y  =  ( A  \ 
( F " x
) )  ->  (
( y  =/=  (/)  ->  ( G `  y )  e.  y )  <->  ( ( A  \  ( F "
x ) )  =/=  (/)  ->  ( G `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) ) )
3837rspcva 3307 . . . . . . . 8  |-  ( ( ( A  \  ( F " x ) )  e.  ~P A  /\  A. y  e.  ~P  A
( y  =/=  (/)  ->  ( G `  y )  e.  y ) )  -> 
( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( G `  ( A  \  ( F " x
) ) )  e.  ( A  \  ( F " x ) ) ) )
3931, 32, 38syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( G `  ( A  \  ( F " x
) ) )  e.  ( A  \  ( F " x ) ) ) )
4039adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  On )  ->  ( ( A  \  ( F
" x ) )  =/=  (/)  ->  ( G `  ( A  \  ( F " x ) ) )  e.  ( A 
\  ( F "
x ) ) ) )
4140imp 445 . . . . 5  |-  ( ( ( ph  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =/=  (/) )  ->  ( G `
 ( A  \ 
( F " x
) ) )  e.  ( A  \  ( F " x ) ) )
4227, 41eqeltrd 2701 . . . 4  |-  ( ( ( ph  /\  x  e.  On )  /\  ( A  \  ( F "
x ) )  =/=  (/) )  ->  ( F `
 x )  e.  ( A  \  ( F " x ) ) )
4342ex 450 . . 3  |-  ( (
ph  /\  x  e.  On )  ->  ( ( A  \  ( F
" x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )
4443ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
455tz7.49c 7541 . 2  |-  ( ( A  e.  V  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
461, 44, 45syl2anc 693 1  |-  ( ph  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158    |-> cmpt 4729   ran crn 5115    |` cres 5116   "cima 5117   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  dnnumch2  37615
  Copyright terms: Public domain W3C validator