| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch1 | Structured version Visualization version Unicode version | ||
| Description: Define an enumeration of a set from a choice function; second part, it restricts to a bijection. EDITORIAL: overlaps dfac8a 8853. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| dnnumch.f |
|
| dnnumch.a |
|
| dnnumch.g |
|
| Ref | Expression |
|---|---|
| dnnumch1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.a |
. 2
| |
| 2 | recsval 7500 |
. . . . . . 7
| |
| 3 | dnnumch.f |
. . . . . . . 8
| |
| 4 | 3 | fveq1i 6192 |
. . . . . . 7
|
| 5 | 3 | tfr1 7493 |
. . . . . . . . . . 11
|
| 6 | fnfun 5988 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . . . 10
|
| 8 | vex 3203 |
. . . . . . . . . 10
| |
| 9 | resfunexg 6479 |
. . . . . . . . . 10
| |
| 10 | 7, 8, 9 | mp2an 708 |
. . . . . . . . 9
|
| 11 | rneq 5351 |
. . . . . . . . . . . . 13
| |
| 12 | df-ima 5127 |
. . . . . . . . . . . . 13
| |
| 13 | 11, 12 | syl6eqr 2674 |
. . . . . . . . . . . 12
|
| 14 | 13 | difeq2d 3728 |
. . . . . . . . . . 11
|
| 15 | 14 | fveq2d 6195 |
. . . . . . . . . 10
|
| 16 | rneq 5351 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | difeq2d 3728 |
. . . . . . . . . . . 12
|
| 18 | 17 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 19 | 18 | cbvmptv 4750 |
. . . . . . . . . 10
|
| 20 | fvex 6201 |
. . . . . . . . . 10
| |
| 21 | 15, 19, 20 | fvmpt 6282 |
. . . . . . . . 9
|
| 22 | 10, 21 | ax-mp 5 |
. . . . . . . 8
|
| 23 | 3 | reseq1i 5392 |
. . . . . . . . 9
|
| 24 | 23 | fveq2i 6194 |
. . . . . . . 8
|
| 25 | 22, 24 | eqtr3i 2646 |
. . . . . . 7
|
| 26 | 2, 4, 25 | 3eqtr4g 2681 |
. . . . . 6
|
| 27 | 26 | ad2antlr 763 |
. . . . 5
|
| 28 | difss 3737 |
. . . . . . . . 9
| |
| 29 | elpw2g 4827 |
. . . . . . . . . 10
| |
| 30 | 1, 29 | syl 17 |
. . . . . . . . 9
|
| 31 | 28, 30 | mpbiri 248 |
. . . . . . . 8
|
| 32 | dnnumch.g |
. . . . . . . 8
| |
| 33 | neeq1 2856 |
. . . . . . . . . 10
| |
| 34 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 35 | id 22 |
. . . . . . . . . . 11
| |
| 36 | 34, 35 | eleq12d 2695 |
. . . . . . . . . 10
|
| 37 | 33, 36 | imbi12d 334 |
. . . . . . . . 9
|
| 38 | 37 | rspcva 3307 |
. . . . . . . 8
|
| 39 | 31, 32, 38 | syl2anc 693 |
. . . . . . 7
|
| 40 | 39 | adantr 481 |
. . . . . 6
|
| 41 | 40 | imp 445 |
. . . . 5
|
| 42 | 27, 41 | eqeltrd 2701 |
. . . 4
|
| 43 | 42 | ex 450 |
. . 3
|
| 44 | 43 | ralrimiva 2966 |
. 2
|
| 45 | 5 | tz7.49c 7541 |
. 2
|
| 46 | 1, 44, 45 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-wrecs 7407 df-recs 7468 |
| This theorem is referenced by: dnnumch2 37615 |
| Copyright terms: Public domain | W3C validator |