| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dnnumch3 | Structured version Visualization version Unicode version | ||
| Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| dnnumch.f |
|
| dnnumch.a |
|
| dnnumch.g |
|
| Ref | Expression |
|---|---|
| dnnumch3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvimass 5485 |
. . . . 5
| |
| 2 | dnnumch.f |
. . . . . . 7
| |
| 3 | 2 | tfr1 7493 |
. . . . . 6
|
| 4 | fndm 5990 |
. . . . . 6
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
|
| 6 | 1, 5 | sseqtri 3637 |
. . . 4
|
| 7 | dnnumch.a |
. . . . . . 7
| |
| 8 | dnnumch.g |
. . . . . . 7
| |
| 9 | 2, 7, 8 | dnnumch2 37615 |
. . . . . 6
|
| 10 | 9 | sselda 3603 |
. . . . 5
|
| 11 | inisegn0 5497 |
. . . . 5
| |
| 12 | 10, 11 | sylib 208 |
. . . 4
|
| 13 | oninton 7000 |
. . . 4
| |
| 14 | 6, 12, 13 | sylancr 695 |
. . 3
|
| 15 | eqid 2622 |
. . 3
| |
| 16 | 14, 15 | fmptd 6385 |
. 2
|
| 17 | 2, 7, 8 | dnnumch3lem 37616 |
. . . . . 6
|
| 18 | 17 | adantrr 753 |
. . . . 5
|
| 19 | 2, 7, 8 | dnnumch3lem 37616 |
. . . . . 6
|
| 20 | 19 | adantrl 752 |
. . . . 5
|
| 21 | 18, 20 | eqeq12d 2637 |
. . . 4
|
| 22 | fveq2 6191 |
. . . . . . 7
| |
| 23 | 22 | adantl 482 |
. . . . . 6
|
| 24 | cnvimass 5485 |
. . . . . . . . . . 11
| |
| 25 | 24, 5 | sseqtri 3637 |
. . . . . . . . . 10
|
| 26 | 9 | sselda 3603 |
. . . . . . . . . . 11
|
| 27 | inisegn0 5497 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sylib 208 |
. . . . . . . . . 10
|
| 29 | onint 6995 |
. . . . . . . . . 10
| |
| 30 | 25, 28, 29 | sylancr 695 |
. . . . . . . . 9
|
| 31 | fniniseg 6338 |
. . . . . . . . . . 11
| |
| 32 | 3, 31 | ax-mp 5 |
. . . . . . . . . 10
|
| 33 | 32 | simprbi 480 |
. . . . . . . . 9
|
| 34 | 30, 33 | syl 17 |
. . . . . . . 8
|
| 35 | 34 | adantrr 753 |
. . . . . . 7
|
| 36 | 35 | adantr 481 |
. . . . . 6
|
| 37 | cnvimass 5485 |
. . . . . . . . . . 11
| |
| 38 | 37, 5 | sseqtri 3637 |
. . . . . . . . . 10
|
| 39 | 9 | sselda 3603 |
. . . . . . . . . . 11
|
| 40 | inisegn0 5497 |
. . . . . . . . . . 11
| |
| 41 | 39, 40 | sylib 208 |
. . . . . . . . . 10
|
| 42 | onint 6995 |
. . . . . . . . . 10
| |
| 43 | 38, 41, 42 | sylancr 695 |
. . . . . . . . 9
|
| 44 | fniniseg 6338 |
. . . . . . . . . . 11
| |
| 45 | 3, 44 | ax-mp 5 |
. . . . . . . . . 10
|
| 46 | 45 | simprbi 480 |
. . . . . . . . 9
|
| 47 | 43, 46 | syl 17 |
. . . . . . . 8
|
| 48 | 47 | adantrl 752 |
. . . . . . 7
|
| 49 | 48 | adantr 481 |
. . . . . 6
|
| 50 | 23, 36, 49 | 3eqtr3d 2664 |
. . . . 5
|
| 51 | 50 | ex 450 |
. . . 4
|
| 52 | 21, 51 | sylbid 230 |
. . 3
|
| 53 | 52 | ralrimivva 2971 |
. 2
|
| 54 | dff13 6512 |
. 2
| |
| 55 | 16, 53, 54 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-wrecs 7407 df-recs 7468 |
| This theorem is referenced by: dnwech 37618 |
| Copyright terms: Public domain | W3C validator |