Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch3lem Structured version   Visualization version   Unicode version

Theorem dnnumch3lem 37616
Description: Value of the ordinal injection function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f  |-  F  = recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) )
dnnumch.a  |-  ( ph  ->  A  e.  V )
dnnumch.g  |-  ( ph  ->  A. y  e.  ~P  A ( y  =/=  (/)  ->  ( G `  y )  e.  y ) )
Assertion
Ref Expression
dnnumch3lem  |-  ( (
ph  /\  w  e.  A )  ->  (
( x  e.  A  |-> 
|^| ( `' F " { x } ) ) `  w )  =  |^| ( `' F " { w } ) )
Distinct variable groups:    w, F, x, y    w, G, x, y, z    w, A, x, y, z    ph, x, w
Allowed substitution hints:    ph( y, z)    F( z)    V( x, y, z, w)

Proof of Theorem dnnumch3lem
StepHypRef Expression
1 simpr 477 . 2  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  A )
2 cnvimass 5485 . . . 4  |-  ( `' F " { w } )  C_  dom  F
3 dnnumch.f . . . . . 6  |-  F  = recs ( ( z  e. 
_V  |->  ( G `  ( A  \  ran  z
) ) ) )
43tfr1 7493 . . . . 5  |-  F  Fn  On
5 fndm 5990 . . . . 5  |-  ( F  Fn  On  ->  dom  F  =  On )
64, 5ax-mp 5 . . . 4  |-  dom  F  =  On
72, 6sseqtri 3637 . . 3  |-  ( `' F " { w } )  C_  On
8 dnnumch.a . . . . . 6  |-  ( ph  ->  A  e.  V )
9 dnnumch.g . . . . . 6  |-  ( ph  ->  A. y  e.  ~P  A ( y  =/=  (/)  ->  ( G `  y )  e.  y ) )
103, 8, 9dnnumch2 37615 . . . . 5  |-  ( ph  ->  A  C_  ran  F )
1110sselda 3603 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  ran  F )
12 inisegn0 5497 . . . 4  |-  ( w  e.  ran  F  <->  ( `' F " { w }
)  =/=  (/) )
1311, 12sylib 208 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  ( `' F " { w } )  =/=  (/) )
14 oninton 7000 . . 3  |-  ( ( ( `' F " { w } ) 
C_  On  /\  ( `' F " { w } )  =/=  (/) )  ->  |^| ( `' F " { w } )  e.  On )
157, 13, 14sylancr 695 . 2  |-  ( (
ph  /\  w  e.  A )  ->  |^| ( `' F " { w } )  e.  On )
16 sneq 4187 . . . . 5  |-  ( x  =  w  ->  { x }  =  { w } )
1716imaeq2d 5466 . . . 4  |-  ( x  =  w  ->  ( `' F " { x } )  =  ( `' F " { w } ) )
1817inteqd 4480 . . 3  |-  ( x  =  w  ->  |^| ( `' F " { x } )  =  |^| ( `' F " { w } ) )
19 eqid 2622 . . 3  |-  ( x  e.  A  |->  |^| ( `' F " { x } ) )  =  ( x  e.  A  |-> 
|^| ( `' F " { x } ) )
2018, 19fvmptg 6280 . 2  |-  ( ( w  e.  A  /\  |^| ( `' F " { w } )  e.  On )  -> 
( ( x  e.  A  |->  |^| ( `' F " { x } ) ) `  w )  =  |^| ( `' F " { w } ) )
211, 15, 20syl2anc 693 1  |-  ( (
ph  /\  w  e.  A )  ->  (
( x  e.  A  |-> 
|^| ( `' F " { x } ) ) `  w )  =  |^| ( `' F " { w } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   |^|cint 4475    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Oncon0 5723    Fn wfn 5883   ` cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  dnnumch3  37617  dnwech  37618
  Copyright terms: Public domain W3C validator