| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oldmm1 | Structured version Visualization version Unicode version | ||
| Description: De Morgan's law for meet in an ortholattice. (chdmm1 28384 analog.) (Contributed by NM, 6-Nov-2011.) |
| Ref | Expression |
|---|---|
| oldmm1.b |
|
| oldmm1.j |
|
| oldmm1.m |
|
| oldmm1.o |
|
| Ref | Expression |
|---|---|
| oldmm1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oldmm1.b |
. 2
| |
| 2 | eqid 2622 |
. 2
| |
| 3 | ollat 34500 |
. . 3
| |
| 4 | 3 | 3ad2ant1 1082 |
. 2
|
| 5 | olop 34501 |
. . . 4
| |
| 6 | 5 | 3ad2ant1 1082 |
. . 3
|
| 7 | oldmm1.m |
. . . . 5
| |
| 8 | 1, 7 | latmcl 17052 |
. . . 4
|
| 9 | 3, 8 | syl3an1 1359 |
. . 3
|
| 10 | oldmm1.o |
. . . 4
| |
| 11 | 1, 10 | opoccl 34481 |
. . 3
|
| 12 | 6, 9, 11 | syl2anc 693 |
. 2
|
| 13 | 1, 10 | opoccl 34481 |
. . . . 5
|
| 14 | 5, 13 | sylan 488 |
. . . 4
|
| 15 | 14 | 3adant3 1081 |
. . 3
|
| 16 | 1, 10 | opoccl 34481 |
. . . . 5
|
| 17 | 5, 16 | sylan 488 |
. . . 4
|
| 18 | 17 | 3adant2 1080 |
. . 3
|
| 19 | oldmm1.j |
. . . 4
| |
| 20 | 1, 19 | latjcl 17051 |
. . 3
|
| 21 | 4, 15, 18, 20 | syl3anc 1326 |
. 2
|
| 22 | 1, 2, 19 | latlej1 17060 |
. . . . . 6
|
| 23 | 4, 15, 18, 22 | syl3anc 1326 |
. . . . 5
|
| 24 | simp2 1062 |
. . . . . 6
| |
| 25 | 1, 2, 10 | oplecon1b 34488 |
. . . . . 6
|
| 26 | 6, 24, 21, 25 | syl3anc 1326 |
. . . . 5
|
| 27 | 23, 26 | mpbid 222 |
. . . 4
|
| 28 | 1, 2, 19 | latlej2 17061 |
. . . . . 6
|
| 29 | 4, 15, 18, 28 | syl3anc 1326 |
. . . . 5
|
| 30 | simp3 1063 |
. . . . . 6
| |
| 31 | 1, 2, 10 | oplecon1b 34488 |
. . . . . 6
|
| 32 | 6, 30, 21, 31 | syl3anc 1326 |
. . . . 5
|
| 33 | 29, 32 | mpbid 222 |
. . . 4
|
| 34 | 1, 10 | opoccl 34481 |
. . . . . 6
|
| 35 | 6, 21, 34 | syl2anc 693 |
. . . . 5
|
| 36 | 1, 2, 7 | latlem12 17078 |
. . . . 5
|
| 37 | 4, 35, 24, 30, 36 | syl13anc 1328 |
. . . 4
|
| 38 | 27, 33, 37 | mpbi2and 956 |
. . 3
|
| 39 | 1, 2, 10 | oplecon1b 34488 |
. . . 4
|
| 40 | 6, 21, 9, 39 | syl3anc 1326 |
. . 3
|
| 41 | 38, 40 | mpbid 222 |
. 2
|
| 42 | 1, 2, 7 | latmle1 17076 |
. . . . 5
|
| 43 | 3, 42 | syl3an1 1359 |
. . . 4
|
| 44 | 1, 2, 10 | oplecon3b 34487 |
. . . . 5
|
| 45 | 6, 9, 24, 44 | syl3anc 1326 |
. . . 4
|
| 46 | 43, 45 | mpbid 222 |
. . 3
|
| 47 | 1, 2, 7 | latmle2 17077 |
. . . . 5
|
| 48 | 3, 47 | syl3an1 1359 |
. . . 4
|
| 49 | 1, 2, 10 | oplecon3b 34487 |
. . . . 5
|
| 50 | 6, 9, 30, 49 | syl3anc 1326 |
. . . 4
|
| 51 | 48, 50 | mpbid 222 |
. . 3
|
| 52 | 1, 2, 19 | latjle12 17062 |
. . . 4
|
| 53 | 4, 15, 18, 12, 52 | syl13anc 1328 |
. . 3
|
| 54 | 46, 51, 53 | mpbi2and 956 |
. 2
|
| 55 | 1, 2, 4, 12, 21, 41, 54 | latasymd 17057 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-lat 17046 df-oposet 34463 df-ol 34465 |
| This theorem is referenced by: oldmm2 34505 oldmm3N 34506 cmtcomlemN 34535 cmtbr2N 34540 omlfh1N 34545 cvrexch 34706 lhpmod2i2 35324 lhpmod6i1 35325 doca2N 36415 djajN 36426 |
| Copyright terms: Public domain | W3C validator |