MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriord Structured version   Visualization version   Unicode version

Theorem domtriord 8106
Description: Dominance is trichotomous in the restricted case of ordinal numbers. (Contributed by Jeff Hankins, 24-Oct-2009.)
Assertion
Ref Expression
domtriord  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )

Proof of Theorem domtriord
StepHypRef Expression
1 sbth 8080 . . . . 5  |-  ( ( B  ~<_  A  /\  A  ~<_  B )  ->  B  ~~  A )
21expcom 451 . . . 4  |-  ( A  ~<_  B  ->  ( B  ~<_  A  ->  B  ~~  A
) )
32a1i 11 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  -> 
( B  ~<_  A  ->  B  ~~  A ) ) )
4 iman 440 . . . 4  |-  ( ( B  ~<_  A  ->  B  ~~  A )  <->  -.  ( B  ~<_  A  /\  -.  B  ~~  A ) )
5 brsdom 7978 . . . 4  |-  ( B 
~<  A  <->  ( B  ~<_  A  /\  -.  B  ~~  A ) )
64, 5xchbinxr 325 . . 3  |-  ( ( B  ~<_  A  ->  B  ~~  A )  <->  -.  B  ~<  A )
73, 6syl6ib 241 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  ->  -.  B  ~<  A ) )
8 onelss 5766 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
9 ssdomg 8001 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( A  C_  B  ->  A  ~<_  B ) )
108, 9syld 47 . . . . . . . . 9  |-  ( B  e.  On  ->  ( A  e.  B  ->  A  ~<_  B ) )
1110adantl 482 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  A  ~<_  B ) )
1211con3d 148 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  -.  A  e.  B ) )
13 ontri1 5757 . . . . . . . 8  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  C_  A  <->  -.  A  e.  B ) )
1413ancoms 469 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  C_  A  <->  -.  A  e.  B ) )
1512, 14sylibrd 249 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  B  C_  A
) )
16 ssdomg 8001 . . . . . . 7  |-  ( A  e.  On  ->  ( B  C_  A  ->  B  ~<_  A ) )
1716adantr 481 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  C_  A  ->  B  ~<_  A ) )
1815, 17syld 47 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  B  ~<_  A ) )
19 ensym 8005 . . . . . . . 8  |-  ( B 
~~  A  ->  A  ~~  B )
20 endom 7982 . . . . . . . 8  |-  ( A 
~~  B  ->  A  ~<_  B )
2119, 20syl 17 . . . . . . 7  |-  ( B 
~~  A  ->  A  ~<_  B )
2221con3i 150 . . . . . 6  |-  ( -.  A  ~<_  B  ->  -.  B  ~~  A )
2322a1i 11 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  -.  B  ~~  A ) )
2418, 23jcad 555 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  ( B  ~<_  A  /\  -.  B  ~~  A ) ) )
2524, 5syl6ibr 242 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  ~<_  B  ->  B  ~<  A ) )
2625con1d 139 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  B  ~<  A  ->  A  ~<_  B ) )
277, 26impbid 202 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ~<_  B  <->  -.  B  ~<  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    e. wcel 1990    C_ wss 3574   class class class wbr 4653   Oncon0 5723    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  sdomel  8107  cardsdomel  8800  alephord  8898  alephsucdom  8902  alephdom2  8910
  Copyright terms: Public domain W3C validator