MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsucdom Structured version   Visualization version   Unicode version

Theorem alephsucdom 8902
Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephsucdom  |-  ( B  e.  On  ->  ( A  ~<_  ( aleph `  B
)  <->  A  ~<  ( aleph ` 
suc  B ) ) )

Proof of Theorem alephsucdom
StepHypRef Expression
1 alephordilem1 8896 . . 3  |-  ( B  e.  On  ->  ( aleph `  B )  ~< 
( aleph `  suc  B ) )
2 domsdomtr 8095 . . . 4  |-  ( ( A  ~<_  ( aleph `  B
)  /\  ( aleph `  B )  ~<  ( aleph `  suc  B ) )  ->  A  ~<  (
aleph `  suc  B ) )
32ex 450 . . 3  |-  ( A  ~<_  ( aleph `  B )  ->  ( ( aleph `  B
)  ~<  ( aleph `  suc  B )  ->  A  ~<  (
aleph `  suc  B ) ) )
41, 3syl5com 31 . 2  |-  ( B  e.  On  ->  ( A  ~<_  ( aleph `  B
)  ->  A  ~<  (
aleph `  suc  B ) ) )
5 sdomdom 7983 . . . . 5  |-  ( A 
~<  ( aleph `  suc  B )  ->  A  ~<_  ( aleph ` 
suc  B ) )
6 alephon 8892 . . . . . 6  |-  ( aleph ` 
suc  B )  e.  On
7 ondomen 8860 . . . . . 6  |-  ( ( ( aleph `  suc  B )  e.  On  /\  A  ~<_  ( aleph `  suc  B ) )  ->  A  e.  dom  card )
86, 7mpan 706 . . . . 5  |-  ( A  ~<_  ( aleph `  suc  B )  ->  A  e.  dom  card )
9 cardid2 8779 . . . . 5  |-  ( A  e.  dom  card  ->  (
card `  A )  ~~  A )
105, 8, 93syl 18 . . . 4  |-  ( A 
~<  ( aleph `  suc  B )  ->  ( card `  A
)  ~~  A )
1110ensymd 8007 . . 3  |-  ( A 
~<  ( aleph `  suc  B )  ->  A  ~~  ( card `  A ) )
12 alephnbtwn2 8895 . . . . . 6  |-  -.  (
( aleph `  B )  ~<  ( card `  A
)  /\  ( card `  A )  ~<  ( aleph `  suc  B ) )
1312imnani 439 . . . . 5  |-  ( (
aleph `  B )  ~< 
( card `  A )  ->  -.  ( card `  A
)  ~<  ( aleph `  suc  B ) )
14 ensdomtr 8096 . . . . . 6  |-  ( ( ( card `  A
)  ~~  A  /\  A  ~<  ( aleph `  suc  B ) )  ->  ( card `  A )  ~< 
( aleph `  suc  B ) )
1510, 14mpancom 703 . . . . 5  |-  ( A 
~<  ( aleph `  suc  B )  ->  ( card `  A
)  ~<  ( aleph `  suc  B ) )
1613, 15nsyl3 133 . . . 4  |-  ( A 
~<  ( aleph `  suc  B )  ->  -.  ( aleph `  B )  ~<  ( card `  A ) )
17 cardon 8770 . . . . 5  |-  ( card `  A )  e.  On
18 alephon 8892 . . . . 5  |-  ( aleph `  B )  e.  On
19 domtriord 8106 . . . . 5  |-  ( ( ( card `  A
)  e.  On  /\  ( aleph `  B )  e.  On )  ->  (
( card `  A )  ~<_  ( aleph `  B )  <->  -.  ( aleph `  B )  ~<  ( card `  A
) ) )
2017, 18, 19mp2an 708 . . . 4  |-  ( (
card `  A )  ~<_  ( aleph `  B )  <->  -.  ( aleph `  B )  ~<  ( card `  A
) )
2116, 20sylibr 224 . . 3  |-  ( A 
~<  ( aleph `  suc  B )  ->  ( card `  A
)  ~<_  ( aleph `  B
) )
22 endomtr 8014 . . 3  |-  ( ( A  ~~  ( card `  A )  /\  ( card `  A )  ~<_  (
aleph `  B ) )  ->  A  ~<_  ( aleph `  B ) )
2311, 21, 22syl2anc 693 . 2  |-  ( A 
~<  ( aleph `  suc  B )  ->  A  ~<_  ( aleph `  B ) )
244, 23impbid1 215 1  |-  ( B  e.  On  ->  ( A  ~<_  ( aleph `  B
)  <->  A  ~<  ( aleph ` 
suc  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    e. wcel 1990   class class class wbr 4653   dom cdm 5114   Oncon0 5723   suc csuc 5725   ` cfv 5888    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761   alephcale 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766
This theorem is referenced by:  alephsuc2  8903  alephreg  9404
  Copyright terms: Public domain W3C validator